奇异摄动问题的移动网格算法
The Moving Mesh Algorithm of Singular Perturbation Problem

作者: 林彬 * , 李晓培 , 李雨江 :湛江师范学院数学与计算科学学院,湛江;

关键词: 奇异摄动问题移动网格法差分格式Singular Perturbation Problem Moving Mesh Method Difference Scheme

摘要: 我们使用移动网格法求解奇异摄动两点边值问题,首先给出问题的差分格式,然后根据等分布原理选取控制函数,给出算法,最后通过求解奇异摄动问题的两个实例来验证这个方法的准确性和有效性。结果表明:使用移动网格法进行计算,CPU运行时间很短并能根据误差来调节网格的分布。

Abstract: In the paper, we use moving mesh method for solving singular perturbed two-point boundary value problem, First, the problem is given difference scheme, and then select the control functions and give algorithm, at last two instances are computed to verify the accuracy and effectiveness of this approach. The results show that: when this method was used, CPU run time became very short and the distribution of grid could be adjusted according to errors.

文章引用: 林彬 , 李晓培 , 李雨江 (2013) 奇异摄动问题的移动网格算法。 数据挖掘, 3, 23-26. doi: 10.12677/HJDM.2013.32005

参考文献

[1] N. Kopteva, M. Stynes. Numerical analysis of singularly per- turbed non-linear reaction-diffusion problems with multiple so- lutions. Applied Numerical Mathematics, 2004, 51(2-3): 273- 288.

[2] N. Kopteva, M. Stynesion. A robust adaptive method for a quasi- linear one-dimensional convection-diffusion problem. SIAM Jour- nal on Numerical Analysis, 2001, 39(4): 1446-1467.

[3] N. Kopteva. Maximum norm a posteriori error estimates for a one-dimensional convection-diffusion problem. SIAM Journal on Numerical Analysis, 2001, 39(2): 423-441.

[4] Y. Chen. Uniform convergence analysis of finite difference approximations for singular perturbation problems on an adapted grid. Advances in Computational Mathematics, 2006, 24(1): 197-212.

[5] 庞宝臣. 常微分方程奇异摄动问题的数值算法[D]. 西安交通大学, 2006.

[6] 杨继明. 用等分布原理求解一类奇异摄动两点边值问题的数值算法[J]. 湖南工程学院学报, 2004, 14(2): 84-87.

[7] 杨继明, 陈艳萍. 一类奇异摄动对流扩散边值问题的移动网格方法[J]. 湘潭大学自然科学学报, 2004, 26(3): 25-29.

分享
Top