卷积算子的非游荡序列
Nonwandering Sequence of Convolution Operators
关键词: 非游荡算子序列; 卷积算子; 超循环序列; Nonwandering Operators Sequence; Convolution Operators; Hypercyclic Sequence
摘要:Abstract: A nonwandering operator is a new kind of linear chaotic operators, which has a wide applications in dynamical system. In this paper, we establish nonwandering sequences of convolution operators and study some proper- ties of these sequences, such as the convergence and the denseness of periodic point.
文章引用: 石少广 , 谢瑶 (2013) 卷积算子的非游荡序列。 动力系统与控制, 2, 40-43. doi: 10.12677/DSC.2013.22007
参考文献
[1] G. Godefroy, J. H. Shapiro. Operators with dense, invariant cy- clic vector manifolds. Journal of Functional Analysis, 1991, 98 (2): 229-269.
[2] R. L. Devaney. An introduction to chaotic dynamical systems. 2nd Edition, Reading: Addison-Wesley, 1989.
[3] L. X. Tian, J. B. Zhou, X. Liu and G. S. Zhong. Nonwandering operators in Banach space. International Journal of Mathematics and Mathematical Sciences, 2005, 24: 3895-3908.
[4] L. X. Tian, D. C. Lu. The property of nonwandering operator. Mathematics and Mechanics, 1996, 17(2): 155-161.
[5] S. G. Shi, G. S. Zhong. Nonwandering operator sequences in Ba- nach space. International Journal of Nonlinear Science, 2006, 1(3): 164-171.
[6] P. Henrik. Hypercyclic sequences of PDE perserving operators. Journal of Approximation Theory, 2006, 138(2): 168-183.
[7] B. G. Luis. Hypercyclic sequences of differential and antidiffer- ential operators. Journal of Approximation Theory, 1997, 96(2): 323-337.
[8] J. B. Zhou, D. C. Lu and L. X. Tian. The hereditayily hypercy- clic decomposition of nonwandering operators in Frechet space. Journal of Jiangsu University (Natural Science Edition), 2001, 22(6): 88-91.