基于广义线性混合模型的电信客户流失预测研究
A Study of Telecom Customer Loss Prediction Based on Generalized Linear Mixed Models

作者: 王 珺 , 费 宇 :云南财经大学统计与数学学院,昆明; 潘建新 :云南财经大学,昆明;

关键词: 客户流失广义线性混合模型(GLMM)预测 Customer Loss Generalized Linear Mixed Models (GLMM) Prediction

摘要:

随着通讯业务的竞争日趋激烈,客户关系管理的重要性日益突出,如何提高客户满意度、减少客户流失几率成为电信企业提高竞争力的重要策略。本文在总结国内外学者研究的基础上,采用广义线性混合模型分析客户流失原因,进行客户流失预测,为电信企业提供一定的参考。

Abstract: With the increasingly fierce competition in the communication business and the growing importance of customer relationship management, how to improve the customer satisfaction and reduce the customer churn rate has became the main strategy to improve the competitiveness of telecom enterprises. Based on the summaries of former researches, this paper used the Generalized Linear Mixed Model to analyze the reasons of customer loss, find out the customer loss prediction model and provide several references for the telecom enterprises.



Abstract:



Abstract:



Abstract:



Abstract:

文章引用: 王 珺 , 费 宇 , 潘建新 (2013) 基于广义线性混合模型的电信客户流失预测研究。 统计学与应用, 2, 51-54. doi: 10.12677/SA.2013.21006

参考文献

[1] 方红. 读者流失预警模型及其在公共图书情报机构中的应用[J]. 黑龙江科技信息, 2007, 2X(4): 103.

[2] 邱义堂. 通信资料库之资料挖掘: 客户流失预测之研究[D].国立中山大学资讯管理学系研究所, 2000.

[3] A. C. Louis. Data mining and causal modeling of customer. Telecommunication Systems, 2002, 21(2): 381-394.

[4] S. Cardelln, M. Golovnya and D. S. Inberg. Churn modeling for mobile telecommunications, 2003. http://www.salford-systems.com/doc/churnwinF08.pdf

[5] A. Ultch. Emergent self-organizing feature maps used for prediction and prevention of churn in mobile phone markets. Journal of Targeting Measurement and Analysis for Marketing, 2002, 10(4): 314-324.

[6] W. H. Au, K. C. C. Chen and X. Yao. A novel evolutionary data mining algorithm with applications to churn prediction. Evolutionary Computation, 2003, 7(6): 532-545.

[7] E. Xu, S. S. Liang and X. D. Gao. An algorithm for predicting customer churn via BP neural network based on rough set. Proceedings of Asia Pacific Conference on Services Computing. Washington DC: IEEE Computer Society, 2006: 47-50.

[8] 赵宇, 李兵, 李秀. 基于改进支持向量机的客户流失分析研究[J]. 计算机集成制造系统, 2007, 13(1): 202-207.

[9] J.-B. Shao, X. Li and W. H. Liu. The application of Ada-boost in customer churn prediction. Proceedings of International Conference on Service Systems and Service Management, 2007: 1-6.

[10] C. E. McCulloch, S. R. Searle and J. M. Neuhaus. Generalized, linear, and mixed models (2nd Edition). Wiley-Interscience, 2008.

[11] P. McCullagh, J. Nelder. Generalized linear models (2nd Edition). Boca Raton: Chapman and Hall, 1988.

分享
Top