The Microstructure and Mechanical Properties of FeCoNiCuMo High-Entropy Alloys

作者: 栾 军 :吉林省冶金研究院;

关键词: 高熵合金微观组织结构力学性能High-Entropy Alloy Microstructure Mechanical Properties

采用电弧熔炼和真空吸铸的方法得到FeCoNiCuxMoFeCoNiCuMox (x表示摩尔比例,取值x =合金。采用X射线衍射仪、扫描电子显微镜、显微硬度仪和万能材料实验机等对上述合金系列的微观组织结构以及力学性能进行了研究。结果表明FeCoNiCuxAlFeCoNiCuMox高熵合金体系容易形成简单FCC结构和BCC结构的固溶体,它们的显微组织是两种简单结构的混合体,表现为先共晶和共晶相的混合。合金的力学性能与CuMo含量有一定的关联。

FeCoNiCuxMo and FeCoNiCuMox (x values in molar ratio, x = 0.2, 0.5, 0.8, 1) high-entropy alloy system were synthesized using a arc melting method. The microstructures and mechanical properties of the alloys were investigated with X-ray diffraction, scanning electron microscopy (SEM), Vichers hardness testing and universal material testing machine. The both alloys exhibit quite simple FCC and BCC solid solution phases, the microstructures of the alloys are mixing phases of BCC and FCC, which exhibit as pre-eutectic and eutectic phases. The mechanical properties of both alloys are related to the amount of Cu or Mo elements.

文章引用: 栾 军 (2013) FeCoNiCuMo高熵合金的组织与性能。 材料科学, 3, 80-84. doi: 10.12677/MS.2013.32015


[1] J. H. Pi, Y. Pan, L. Zhang and H. Zhang. Microstructure and property of AlTiCrFeNiCu high-entropy alloy. Journal of Alloys and Compounds, 2011, 509(18): 5641-5645.

[2] Y. P. Wang, B. S. Li, M. X. Ren, C. Yang and H. Z. Fu. Micro- structure and compressive properties of AlCrFeCoNi high en- tropy alloy. Materials Science and Engineering A, 2008, 491 (1-2): 154-158.

[3] A. V. Kuznetsova, D. G. Shaysultanova, N. D. Stepanova, G. A. Salishcheva and O. N. Senkov. Tensile properties of an AlCrCu- NiFeCo high-entropy alloy in as-cast and wrought conditions. Materials Science and Engineering A, 2012, 533: 107-118.

[4] X. Yang, Y. Zhang. Prediction of high-entropy stabilized solid- solution in multi-component alloys. Materials Chemistry and Physics, 2012, 132(2-3): 233-238.

[5] Y. J. Zhou, Y. Zhang, Y. L. Wang, et al. Solid solution alloys of AlCoCrFeNiTix with excellent room-temperature mechanical properties. Applied Physics Letters, 2007, 90(18): Article ID: 181904.

[6] X. F. Wang, Y. Zhang, Y. Qiao, et al. Novel microstructure and properties of multicomponent CoCrCuFeNiTix alloys. Intermet- allics, 2007, 15(3): 357-362.

[7] 陈敏, 刘源, 李言祥等. 多主元高熵合金A1TiFeNiCuCrx微观结构和力学性能[J]. 金属学报, 2007, 43: 1020-1024.

[8] 周云军, 张勇, 王艳丽, 陈国良. 多组元Ax(TiVCrMnFeCoNi- Cu)100−x高熵合金系微观组织研究[J]. 稀有金属材料与工程, 2007, 36: 2136-2139.

[9] C. J. Tong, Y. L. Chen, S. K. Chen, et al. Microstructure charac- terization of AIxCoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metallurgical and Materials Transac- tions A, 2005, 36(4): 881-893.

[10] J. M. Wu, S. J. Lin, J. W. Yeh, et al. Adhesive wear behavior of AlxCoCrCuFeNi high-entropy alloys as a function of aluminum content. Wear, 2006, 261(5-6): 513-519.

[11] C. Y. Hsu, J. W. Yeh, S. K. Chen, et al. Wear resistance and high temperature compression strength of FCC CuCoNiCrAl0.5 Fe al- loy with boron addition. Metallurgical and Materials Transac- tions A, 2004, 35(5): 1465-1469.

[12] Y. J. Hsu, W. C. Chiang and J. K. Wu. Corrosion behavior of Fe- CoNiCrCu high-entropy alloys in 3.5% sodium chloride solution. Materials Chemistry and Physics, 2005, 92: 112-117.

[13] Y. Y. Chen, T. Duval, U. D. Hung, J. W. Yeh and H. C. Shih. Microstructure and electrochemical properties of high entropy alloys—A comparison with type-304 stainless steel. Corrosion Science, 2005, 47(9): 2257-2279.

[14] X. Yang, Y. Zhang and P. K. Liaw. Microstructure and com- pressive properties of NbTiVTaAlx high entropy alloys. Procedia Engineering, 2012, 36: 292-298.

[15] S. Praveen, B. S. Murty and R. S. Kottada. Alloying behavior in multi-component AlCoCrCuFe and NiCoCrCuFe high entropy alloys. Materials Science and Engineering A, 2012, 534: 83-89.