基于MZM负反馈调制下的暗脉冲产生研究
Based on the Negative-Feedback Modulating of MZM Researching on Dark Pulse Generation

作者: 王会义 , 蓝 斓 , 陈烈辉 , 冯克正 , 曹炼铿 :广东省电信规划设计院有限公司,广州; 陈 银 :华南师范大学信息光电子科技学院,广州;

关键词: 暗脉冲负反馈调制 Dark Pulse Negative-Feedback Modulation

摘要:

暗脉冲产生的研究已成为国际上热点研究之一。考虑到马赫曾德尔调试(MZM)技术具有灵活的电控特性,通过对MZM技术的透过率曲线进行分析,获得了MZM在负反馈调制条件下的输出特性,并利用双曲正割电脉冲信号驱动的MZM调制连续激光,产生了有限连续背景光下的暗脉冲。分析和仿真表明该方法具有有效的可行性。

Abstract: Dark pulse has been specially researched in the world. Considering the flexible electronic control of the MZM, the transmission rate function of the MZM is analyzed to obtain output characteristics of the negative-feedback condition. The MZM driven by electronic hyperbolic-secant pulse modulate the CW laser in the negative-feedback condition of the MZM, and the dark pulse is generated with finite CW background. Moreover, the analysis and simulation experiment results indicate the effective feasibility.



Abstract:



Abstract:



Abstract:

文章引用: 王会义 , 蓝 斓 , 陈烈辉 , 冯克正 , 曹炼铿 , 陈 银 (2013) 基于MZM负反馈调制下的暗脉冲产生研究。 应用物理, 3, 56-60. doi: 10.12677/APP.2013.32011

参考文献

[1] A. Hasegawa, F. Tappert. Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers I. Anomalous dispersion. Applied Physics Letters, 1973, 23(3): 142-145.

[2] S. A. Gredeskul, Y. S. Kivshar. Generation of dark solitons in optical fibers. Physical Review Letters, 1989, 62(8): 977.

[3] W. Zhao, E. Bourkoff. Generation, propagation, and amplification of dark solitons. Journal of the Optical Society of America B, 1992, 9(7): 1134-1144.

[4] J. P. Hamaide, P. Emplit and M. Haelterman. Dark-soliton jitter in amplified optical transmission system. Optics Letters, 1991, 16(20): 1578-1580.

[5] J. E. Rothenberg, H. K. Heinrich. Observation of the formation of dark-soliton trains in optical fibers. Optics Letters, 1992, 17(4): 261-263.

[6] P. Emplit, M. Haelterman and J. P. Hamaide. Picosec-ond dark soliton over a 1-km fiber at 850 nm. Optics Letters, 1993, 18(13): 1047-1049.

[7] H. Zhang, D. Y. Tang, L. M. Zhao and X. Wu. Dark pulse emission of a fiber laser. Physical Review A, 2009, 80: Article ID: 45803.

[8] H. Y. Wang, W. C. Xu, Z. C. Luo, A. P. Luo, W. J. Cao, J. L. Dong and L. Y. Wang. Experimental observation of dark soliton emitting with spectral sideband in an all-fiber ring cavity laser. Chinese Physics Letters, 2011, 28(2): Article ID: 024207.

[9] H. P. Li, H. D. Xia, Z. Jing, J. K. Liao, X. G. Tang, Y. Liu and Y. Z. Liu. Dark pulse generation in a dispersion-managed fiber laser. Laser Phys-ics, 2012, 22(1): 261-264.

[10] M. Feng, K. L. Silverman, R. P. Mirin and S. T. Cundiff. Dark pulse quantum dot diode laser. Optics Express, 2010, 18(13): 13385-13395.

[11] H. Y. Wang, W. C. Xu, W. J. Cao, L. Y. Wang and J. L. Dong. Experimental observation of bright-dark pulse emitting in an all- fiber ring cavity laser. Laser Physics, 2012, 22(1): 282-285.

[12] L. Y. Wang, W. C. Xu, Z. C. Luo, W. J. Cao, A. P. Luo, J. L. Dong and H. Y. Wang. Dark pulses with tunable repetition rate emission from fiber ring laser. Optics Communications, 2012, 285(8): 2113-2117.

[13] K. Noguchi, O. Mitomi, H. Miyazawa and S. Seki. A broadband Ti:LiNbO3 optical modulator with a ridge structure. Journal of Lightwave Technology, 1995, 13(6): 1164-1168.

[14] S. H. Xu, Z. M. Yang, W. N. Zhang, X. M. Wei, Q. Qian, D. D. Chen, Q. Y. Zhang, S. X. Shen, M. Y. Peng and J. R. Qiu. 400 mW ultrashort cavity low noise single frequency Yb3+-doped phosphate fiber laser. Optics Letter, 2011, 36(18): 3708-3710.

分享
Top