考虑系统元件故障不确定性的电压暂降盲数评估
Voltage Sag Evaluation Method Based on Blind Number Mod-el of Component Reliability Parameter

作者: 胡珊珊 * , 肖先勇 :四川大学电气信息学院; 魏晓天 :乐山电力股份有限公司;

关键词: 电压暂降可靠性参数盲数模型复杂不确定性随机估计可信度Voltage Sag Voltage Sag Frequency Blind Number Uncertainty Stochastic Estimation Credible Degree

摘要: 系统元件可靠性参数和电压暂降评估结果的不确定性刻画方式对评估结果的可信性和工程应用价值有重要影响。本文基于盲数理论提出考虑复杂不确定性的元件可靠性参数盲数刻画模型和电压暂降评估方法。在研究元件可靠性参数盲数模型及算法的基础上,结合电压暂降解析式评估法,建立了电压暂降盲数评估模型,并研究具体算法。在得到评估结果的可能取值区间和可信度的基础上,通过求取盲数均值得暂降频次定量评估结果。对IEEE-30节点测试系统进行仿真并与现有方法比较证明,所得结果准确,同时具有点值法和区间法的优点,不仅能获得暂降频次的可能区间取值,而且还能获得取值可信度,更满足工程应用需要。

Abstract: The way to depict the uncertainty of components reliability parameters and voltage sag evaluation results has significant influence on the credibility of evaluation results and engineering application value. Based on the blind num-ber theory, this paper proposed a new method to depict components reliability parameters and voltage sag evaluation results. Introducing the blind number into depicting the multiple uncertainties of components reliability parameters, combining the advantage of the analytical method to assess voltage sag, this paper establish the model of evaluation voltage sag on the base of the blind number and research on the specific evaluation algorithm. Upon obtaining the possible interval of voltage sag frequency and the corresponding credible degree, this paper take the blind number ex-pectations of evaluation results as voltage sag frequency evaluation results. The proposed method had been applied to the IEEE-30 bus test system, the simulation results have shown that the evaluation results have high accuracy, including the advantage of deterministic method and interval number method, this method can not only give the possible interval results but also the corresponding credible degree, better satisfying the engineering applications.

文章引用: 胡珊珊 , 肖先勇 , 魏晓天 (2013) 考虑系统元件故障不确定性的电压暂降盲数评估。 输配电工程与技术, 2, 11-16. doi: 10.12677/TDET.2013.21002

参考文献

[1] IEEE Std.1159-1995. IEEE recommended practice for monitoring electric power quality, 1995.

[2] 肖湘宁. 电能质量分析与控制[M]. 北京: 中国电力出版社, 2004: 124-125.

[3] 肖先勇, 王希宝, 薛丽丽等. 敏感负荷电压凹陷敏感度的随机估计方法[J]. 电网技术, 2007, 31(22): 30-33.

[4] S. Z. Djokic, J. Desmet, G. Vanalrnem, et al. Sensitivity of personal computers to voltage sags and short interruptions. IEEE Transactions on Power Delivery, 2005, 20(1): 375-383.

[5] S. Z. Djokic, K. Stockman, J. V. Milanovic, et al. Sensitivity of AC adjustable speed drives to voltage sags and short interruptions. IEEE Transactions on Power Delivery, 2005, 20(1): 494- 505.

[6] 陈铁敏, 杨洪耕. 基于改进故障点法的电压凹陷评估[J]. 电力自动化设备, 2008, 28(6): 66-73.

[7] 肖先勇, 马超, 李勇. 线路故障引起电压凹陷的频次最大熵评估[J]. 中国电机工程学报, 2009, 29(1): 87-93.

[8] 肖先勇, 李政光, 陈武等. 考虑故障阻抗与多级变压器影响的电压凹陷评估[J]. 电力自动化设备, 2010, 30(2): 43-47.

[9] J. A. Martinez, J. Martin-Arnedo. Voltage sag stochastic prediction using an electromagnetic transients program. IEEE Transactions on Power Delivery, 2004, 19(4): 1975-1982.

[10] M. H. J. Bollen. Fast assessment method for voltage sags in distribution systems. IEEE Transactions on Industry Applications, 1996, 32(6): 1414-1423.

[11] M. H. J. Bollen. Method of critical distances for stochastic assessment of voltage sags. IEEE Proceeding Generation, Transmission and Distribution, 1998, 145(1): 70-76.

[12] M. R. Qader, M. H. J. Bollen. Stochastic prediction of voltage sags in a large transmission system. IEEE Transactions on Industry Applications, 1999, 35(1): 152-162.

[13] C. H. Park, G. Jang. Stochastic estimation of voltage sags in large meshed network. IEEE Transactions on Power Delivery, 2007, 22(3): 1655-1664.

[14] E. J. Elisa, H. Araceli. An analytical approach for stochastic assessment of balanced and unbalanced voltage sags in large systems. IEEE Transactions on Power Delivery, 2006, 21(3): 1493-1500.

[15] 肖先勇, 陈武等. 敏感设备电压暂降敏感度模糊随机评估[J]. 中国电机工程学报, 2009, 29(34): 90-95.

[16] M. T. Aung, J. V. Milanovic. Stochastic prediction of voltage sags by considering the probability of the failure of the protection system. IEEE Transactions on Power Delivery, 2006, 21(1): 322-329.

[17] 肖先勇, 徐培栋, 陈卫东等. 配电系统电压凹陷幅值与频次的区间评估[J]. 电力自动化设备, 2009, 29(9): 7-10.

[18] 任震, 万官泉, 黄雯莹. 参数不确定性的配电系统可靠性区间评估[J]. 中国电机工程学报, 2003, 23(12): 68-73.

[19] 胡毅. 输电线路运行故障的分析与防治[J]. 高电压技术, 2007, 33(3): 1-8.

[20] 刘开第, 吴和琴, 庞彦军等. 不确定性信息数学处理及应用[M]. 北京: 科学出版社, 1999: 160-184.

[21] 雷秀仁, 任震, 陈碧云等. 电力系统可靠性评估的不确定性数学模型探讨[J]. 电力自动化设备, 2005, 25(11): 1-4.

[22] M. N. Moschakis, N. D. Hatziargyriou. Analytical calculation and stochastic assessment of voltage sags. IEEE Transactions on Power Delivery, 2006, 21(3): 1727-1734.

[23] 雷秀仁, 任震, 黄雯莹. 处理配电系统可靠性评估不确定性的未确知数学方法[J]. 电力系统自动化, 2005, 29(l7): 28-33.

分享
Top