Structure Analysis and Growth Pattern of BiFeO3 Composite Film

作者: 杨 军 , 杨 浩 :苏州大学物理科学与技术学院,苏州;

关键词: 脉冲激光沉积复合薄膜微结构润湿模型 Pulsed Laser Deposition Composite Film Microstructure Wetting Model


本文采用脉冲激光沉积法(PLD)制备了(BiFeO3)0.5:(Sm2O3)0.5/SrTiO3(011)复合薄膜,采用X射线衍射仪(XRD)、能量色散X射线光谱仪(EDX)、X射线φ扫描(XRD phi-scan)和透射电子显微镜(TEM)测试分析了复合薄膜的取向关系、组分、微结构以及界面。并通过“润湿模型”原理结合能量最小化原理推测出了复合薄膜的可能生长结构,发现理论与实验结果相吻合。说明该“润湿模型”可以用来有效的分析讨论复合薄膜的微结构和生长机理。

Abstract: A (BiFeO3)0.5:(Sm2O3)0.5/SrTiO3(011) composite film has been made by pulsed laser deposition (PLD). Various methods, such as x-ray diffractometer (XRD), energy dispersive x-ray spectroscopy (EDX), x-ray diffraction phi-scan (XRD phi-scan) and transmission electron microscopy (TEM), were used to measure and analyze the orientation relationship, composition, microstructure and interface of the composite film. A possible growth pattern of the film has been speculated by the theory of Wetting Model and Energy Minimization Principle. Analysis shows that the growth pattern is in coincidence with the practical results. The conclusion is that the Wetting Model can be applied to analyze and discuss the microstructure and growth mechanism of composite films.



文章引用: 杨 军 , 杨 浩 (2013) BiFeO3复合薄膜结构分析与生长模型。 应用物理, 3, 38-43. doi: 10.12677/APP.2013.32008


[1] H. Yang, H. Y. Wang and J. Yoon. Vertical interface effect on the physical properties of self-assembled nanocomposite epitaxial films. Advanced Materials, 2009, 21(37): 3794-3798.

[2] J. Dho, X. D. Qi and J. L. Macmanus-driscoll. Large electric polarization and exchange bias in multiferroic BiFeO3. Advanced Materials, 2006, 18(11): 1445-1448

[3] X. D. Qi, J. Dho and R. Tomov. Greatly re-duced leakage current and conduction mechanism in aliova-lent-ion-doped BiFeO3. Applied Physics Letters, 2005, 86(6): 062903(1-3).

[4] J. Wang, J. B. Neaton and H. Zheng. Epitaxial BiFeO3 multiferroic thin film heterostructures. Science, 2003, 299(5613): 1719- 1722

[5] H. M. Zheng, F. Straub and Y. H. Chu. Self-assembled growth of BiFeO3-CoFe2O4 nanostructures. Advanced Materials, 2006, 18(20): 2747-2752.

[6] Z. P. Tan, J. Slutsker and L. R. Alexander. Epitaxial self-assem- bly of multiferroic nanostructures. Journal of Applied Physics, 2009, 105(6): 061615(1-5).

[7] I. Levin, J. H. Li and J. Slutsker. Design of self-assembled multiferroic nanos-tructures in epitaxial films. Advanced Materials, 2006, 18(15): 2044-2047.

[8] R. K. Mishra, G. Thomas. Surface energy of spinel. Journal of Applied Physics, 1977, 48(11): 4576-4580.

[9] R. I. Eglitis, D. Vanderbilt. First-principles calculations of atomic and electronic struc-ture of SrTiO3 (001) and (011) surfaces. Physical Review B, 2008, 77(19): 195408(1-10).

[10] H. M. Zheng, Q. Zhan and F. Zavaliche. Controlling self-as- sembled perovskite-spinel nanostructures. Nano Letters, 2006, 6(7): 1401-1407.

[11] W. L. Winterbottom. Equilibrium shape of a small particle in contact with a foreign substrate. Acta Metallurgica, 1967, 15(2): 303-310.