半参数非线性再生散度混合效应模型的参数估计和影响分析
Asymptotic Properties of Estimation and Influence Diagnostics on Semiparametric Nonlinear Reproductive Dispersion Mixed-Effects Models

作者: 姜 荣 , 李静茹 , 钱伟民 :同济大学数学系,上海;

关键词: 半参数非线性模型再生散度混合效应模型局部影响P-样条广义Cook距离MCNR 算法 Semiparametric Nonlinear Model Reproductive Dispersion Mixed-Effects Model Local Influences Penalized Spline Generalized Cook Distance MCNR Algorithm

摘要:

本文把随机效应看作缺失数据并利用P-样条拟合非参数部分,应用MCNR算法得到了半参数非线性再生散度混合效应模型的未知参数的估计,同时利用Q函数得到了模型的广义Cook距离。此外,本文还研究了三种不同扰动情形的局部影响分析,得到了相应的影响矩阵。最后,通过模拟和实例验证了本文所提出的估计方法的有效性。

Abstract: This paper proposes several case-deletion and local influence measures for assessing the influence of an observation for semiparametric nonlinear reproductive dispersion mixed-effects models. The essential idea is to treat the latent random effects in the model as missing data and estimate unknown parameters by MCNR algorithm. On the basis of the Q-function which is associated with the conditional expectation of the complete-data log-likelihood, we generate generalized Cook Distance. Three different perturbation schemes are discussed. Finally, the proposed methods are illustrated by the simulation analysis and one real data set.

文章引用: 姜 荣 , 李静茹 , 钱伟民 (2013) 半参数非线性再生散度混合效应模型的参数估计和影响分析。 统计学与应用, 2, 1-8. doi: 10.12677/SA.2013.21001

参考文献

[1] R. D. Cook, S. Weisberg. Residual and influence in regression. New York: Chapman and Hall, 1982.

[2] G. Seber, C. J. Wild. Nonlinear regression. New York: Wiley, 1989.

[3] 姜荣, 邵明江, 钱伟民.半参数非线性模型中的t-型估计和影响分析[J]. 华东师范大学学报(自然科学版), 2011, 3: 1-11.

[4] R. J. Beckman, C. J. Nachtsheim and R. D. Cook. Diagnostics for mixed-model analysis of variance. Technometrics, 1987, 29: 413-426.

[5] 张浩, 朱仲义. 半参数广义线性混合效应模型的影响分析[J]. 应用数学学报, 2007, 30: 773-756.

[6] B. Jorgensen. The theory of dispersion models. London: Chap- man and Hall, 1997.

[7] 唐年胜, 韦博成. 非线性再生散度模型. 北京: 科学出版社, 2007.

[8] X. H. Lin, D. W. Zhang. Inference in generalized additive mixed models by using smoothing splines. Journal of the Royal Statistical Society: Series B, 1999, 61(2): 381-400.

[9] C. E. McCulloch. Maximum likelihood algorithm for generalized linear mixed models. Journal of the American Statistical Asso- ciation, 1997, 92(437): 162-170.

[10] Y. Yu, D. Ruppert. Penalized spline estimation for partially linear single-index models. Journal of the American Statistical Association, 2002, 97(460): 1042-1054.

[11] H. T. Zhu, S.-Y. Lee, B.-C. Wei and J. L. Zhu. Case-deletion measures for models with incomplete data. Biometrika, 2001, 88(3): 727-737.

[12] A. Gelman, G. O. Roberts and W. R. Gilks. Efficient metropolis jumping rules. Bayesian statistics 5. Oxford: Oxford University Press, 1995).

[13] M. Davison, D. M. Giltinan. Nonlinear models for repeated measurement data. London: Chapman and Hall, 1995.

[14] 韦博成, 林金官, 解锋昌. 统计诊断[M]. 北京: 高等教育出版社, 2009.

分享
Top