变化环境下洪水频率分布参数演变规律及成因
Variable Properties and Causes of Flood Frequency Distribution Parameters under Changing Environment

作者: 蔡斯龙 * , 张家鸣 :中山大学水资源与环境研究中心; 陈晓宏 * , 叶长青 , 张丽娟 :华南地区水循环与水安全广东省普通高校重点实验室;

关键词: 时变统计参数频率分析极值流量非一致性Time-Varying Parameters Frequency Analysis Stream Flow Extremes Inconsistent

摘要: 世界上众多江河洪水序列形成的环境背景“一致性”已不复存在,传统极值流量分析的“极值理论”需要修正以适应这些现象。本文采用Pearson-Ⅲ型分布函数,以L-矩法估参。应用30a逐年滑动平均法分解变化环境下洪水分布参数演变规律,并对其成因及影响作了有益探讨。结果表明:1) 东江年最大日流量呈显著下降趋势,产生非一致性。除了降雨外,大中型水库调蓄影响是主要原因。2) 变化环境下,非一致性洪水序列引起分布参数改变,已导致高水尾端特征由“陡峭”变为“平缓”。3) 随分布参数的改变,指定标准P(百年一遇),其相应设计流量值也时刻发生改变,量级表现为由大减小。4) 在变化环境情况下,洪水重现期往往不是描述一场洪水的一个固定不变的属性。

Abstract: The environment consistence of flood series of many rivers is no longer existed. And the normal method that used to analyze stream flow need to be adjusted to adapt these phenomena. This paper analyzes flood frequency by Pearson-Ⅲ distribution and estimate the parameters with the method of L-moments. The Changing properties, causes and impacts of parameters of the generalized extreme value distribution is analyzed by use of the 30-year moving average method. The result indicate that: 1) The inconsistent annual maximum daily flow series of stations in Dongjiang Basin shows a descend trend that caused by rainfall and construction of water conservancy projects, the latter is the major reason; 2) The flood series maintain inconsistency before and after environment change, the impacts on fitting curve of flood series showed an overall performance as upper tail from “gentle” to “steep”; 3) Because of the parameters is changing, so will the design flood magnitude, and its trend is descend; 4) The flood return period is no a constant property for describing a flood under the changing environment.

文章引用: 蔡斯龙 , 陈晓宏 , 叶长青 , 张家鸣 , 张丽娟 (2013) 变化环境下洪水频率分布参数演变规律及成因。 水资源研究, 2, 42-50. doi: 10.12677/JWRR.2013.21007

参考文献

[1] SCHIERMEIER, Q. Increased flood risk linked to global warm- ing. Nature, 2011, 470(7334): 378-381.

[2] EASTERLING, D. E., MEEH, A. G., PARMESAN, C., et al. Climate extremes: Observations, modeling, and impacts. Science, 2000, 289: 2068-2074.

[3] MILLY, P. C. D., WETHERALD, P. T. Increasing risk of great floods in a changing climate. Nature, 2002, 415(6871): 514-517.

[4] 谢平, 陈广才, 夏军. 变化环境下非一致性年径流序列的水文频率计算原理[J]. 武汉大学学报(工学版), 2005, 38(6): 6-15. XIE Ping, CHEN Guangcai and XIA Jun. Hydrological frequen- cy calculation principle of inconsistent annual runoff series un- der changing environments. Journal of Wuhan University of Hy- draulic and Electric Engineering, 2005, 38(6): 6-15. (in Chi-nese)

[5] 梁忠民, 胡义明, 王军. 非一致性水文频率分析的研究进展[J]. 水科学进展, 2011, 22(6): 864-871. LIANG Zhongmin, HU Yiming and WANG Jun. Advances in hydrological frequency analysis of non-stationary time series. Advances in Water Science, 2011, 22(6): 864-871. (in Chinese)

[6] 汪丽娜. 变化环境下的洪水特性研究及特征量重构的探讨以武江为例[D]. 广州: 中山大学, 2010: 14-15. WANG Li’na. Study on flood characteristic and discussion on restructured characteristic quantity under the change environment in the Wujiang Basin. Guangzhou: Sun Yat-sen University, 2010: 14-15. (in Chinese)

[7] STRUPCZEWSKI, W. G., SINGH, V. P. and FELUCH, W. Non- stationary approach to at-site flood frequency modeling I. Maxi mum likelihood estimation. Journal of Hydrology, 2001, 248(1- 4): 123-142.

[8] CUNDERLIK, J. M., BURN, D. H. Non-stationary pooled flood frequency analysis. Journal of Hydrology, 2003, 276(1-4): 210- 223.

[9] KHALIQ, M. N., OUARDA, T. B. M. J., et al. Frequency analy- sis of a sequence of dependent and/or non-stationary hydro-me- teorological observations: A review. Journal of Hydrology, 2006, 329(3-4): 534-552.

[10] SINGH, V. P., WANG, S. X. and ZHANG, L. Frequency analysis of nonidentically distributed hydrologic flood data. Journal of Hydrology, 2005, 307(1-4): 175-195.

[11] ZHANG, Q., XU, C. Y., YU, Z., et al. Multifractal analysis of streamflow records of the East River Basin (Pearl River), China. Physica A, 2009, 388: 927-934.

[12] 王兆礼. 气候与土地利用变化的流域水文系统响应——以东江流域为例[D]. 广州: 中山大学, 2007. WANG Zhaoli. Effects of climatic change and LUCC on hydro- logical system in the East River Basin, South China. Guangzhou: Sun Yat-sen University, 2007. (in Chinese)

[13] 郭生练. 设计洪水研究进展与评价[M]. 北京: 中国水利水电出版社, 2005. GUO Shenglian. Advance and assessment of design flood methods. Beijing: China Water Power Press, 2005. (in Chi-nese)

[14] HOSKING, J. R. M. L-moments: Analysis and estimation of distributions using linear combinations of order statistics. Journal of the Royal Statistical Society (Series B), 1990, 52: 105- 124.

[15] 熊立华, 郭生练. L-矩在区域洪水频率分析中的应用[J]. 水力发电, 2003, 29(3): 6-8. XIONG Lihua, GUO Shenglian. Application of L-moments in the regional flood frequency analysis. Water Power, 2003, 29(3): 6-8. (in Chinese)

[16] WAYLEN, P., WOO, M. K. Prediction of annual floods gener- ated by mixed processes. Water Resources Research, 1982, 18 (4): 1283- 1286.

[17] EL ADLOUNI, S., BOBEE, B. and OUARDA, T. B. M. J. On the tails of extreme event distributions in hydrology. Journal of Hydrology, 2008, 355: 16-33.

[18] YEVJEVICH, V. Probability and statistics in hydrology. Fort Collins: Water Resources Publications, 1972: 214-232.

[19] 詹道江, 叶守泽. 工程水文学[M]. 北京: 中国水利水电出版社, 1999. ZHAN Daojiang, YE Shouze. Engineering hydrology. Beijing: China Water Power Press, 1999. (in Chinese)

[20] 陈德雅, 林振勋. 东江流域水资源综合利用规划回顾[J]. 水利规划, 1997, 1: 24-29. CHEN Deya, LIN Zhenxun. Review of water resources synthe- tic plan of Dongjiang Basin. Water Resources Planning, 1997, 1: 24-29. (in Chinese).

分享
Top