基于改进正规化周期回归模型的中长期径流预测—以新丰江流域为例
Mid-Long-Term Runoff Forecasting Based on an Improved Normalized Periodic Regression Model—A Case Study in the Xingfeng River Basin

作者: 罗小妹 , 陈晓宏 * , 蔡斯龙 :中山大学地理科学与规划学院水资源与环境系;

关键词: 正规化周期回归径流预测新丰江流域Normalized Periodic Regression Model Runoff Forecasting Xinfeng River Basin

摘要: 本文基于正规化周期回归模型,对新丰江流域月径流量序列的演变规律进行分析,得到序列演变趋势和稳定周期波序列。在此基础上加入人工干预筛选周期,一定程度上避免了提取到的部分伪周期;同时,考虑到不同月份径流量丰枯程度不同,对汛期和非汛期选取不同的前期时刻流量和雨量作为校正因子。结果表明改进后的方法可以提高新丰江月径流量预测精度,可用于中长期径流预报。

Abstract: In this study we analyzed monthly runoff evolution in XinfengRiver Basinbased on normalized periodic regression forecasting model, and obtained the variable tendency and the steady period of the river channel discharge. Artificially selected period were added to avoid fakes to certain time scale and in consideration of the difference of runoff in different months, another earlier runoff and precipitation are added in both flood season and non-flood season. It was concluded that the improved method can raise the prediction accuracy as in theXinfengRiver basin, thus being used to forecast the mid-long-term runoff.

文章引用: 罗小妹 , 陈晓宏 , 蔡斯龙 (2013) 基于改进正规化周期回归模型的中长期径流预测—以新丰江流域为例。 水资源研究, 2, 27-32. doi: 10.12677/JWRR.2013.21005

参考文献

[1] 陈金荣, 范钟秀. 中国中长期水文预报的现状与发展趋势[A]. 水文预报论文选集[C]. 北京: 水利电力出版社, 1985: 174- 179. CHEN Jinrong, FAN Zhongxiu. The situation and development trend of medium-and-long term hydrological forecasting in China. Selected papers of hydrological forecasting. Beijing: Wa- ter Power Press, 1985: 174-179. (in Chinese)

[2] BOX, G. E. P., JENKENS, G. M. Time series analysis: Forecast- ing and control. San Francisco: Holden Day, 1970.

[3] 冯国章. 枯水径流预报的最优模糊划分自激励门限自回归模型[J]. 西北农业大学学报, 1997, 25(2): 21-26. FENG Guozhang. Optimal fuzzy partitioned self-excited thresh- old autoregressive model for low flow forecast. Acta University Agriculture Boreali-Occidentalis, 1997, 25(2): 21-26. (in Chi- nese)

[4] 金菊良, 丁晶, 魏一鸣. 基于遗传算法的门限自回归模型在浅层地下水位预测中的应用[J]. 水利学报, 1999, 7: 230-234. JIN Juliang, DING Jing. Threshold auto-regressive model based on genetic algorithm and its application to forecasting the shallow groundwater level[J]. SHUILI XUEBAO, 1999,(6): 51-55. (in Chinese)

[5] 黄忠恕, 王钦梁, 匡奇. 北太平洋和青藏高原下垫面热状况与长江流域汛期旱涝关系初步探讨[A]. 全国水文预报学术讨论会论文集[C]. 北京: 水利电力出版社, 1985: 184-186. HUANG Zhongshu, WANG Qinliang and KUNAG Qi. Preli- minary study of North Pacific and the Qinghai-Tibet Plateau underlying surface thermal conditions and flood-drought rela- tions in the Yangtze River Basin. Beijing: Water Power Press, 1985:184-186. (in Chinese)

[6] 刘清仁. 松花江流域水旱灾害发生规律及长期预报研究[J]. 水科学进展, 1994, 5(4): 319-327. LIU Qingren. A study on flood and drought change and its long- term prediction in the Songhua River Basin. Advances in Water Science, 1994, 5(4): 319-327.

[7] 陈守煜, 许士国. 径流分级长期预报的模糊聚类分析法[J]. 水利学报, 1986, 3: 43-49. CHEN Shouyu, XU Shiguo. Fuzzy clustering analysis of the runoff grading long-term forecasting. Shuili Xuebao, 1986, 3: 43-49. (in Chinese)

[8] 陈守煜. 中长期水文预报综合分析理论模式与方法[J]. 水利学报, 1997, (8): 15-21. CHEN Shouyu. Theoretical pattern of comprehensive analysis and method for mid and long term hydrology forecasts. Shuili Xuebao, 1997, (8): 15-21. (in Chinese)

[9] HSU, K., GUPTA, H. V. and SORROSHIAN, S. Artificial neural net work modeling of the rainfall-runoff process. Water Re- source Research, 1995, 31(10): 2517-2530.

[10] 屈亚玲, 周建中, 刘芳. 基于改进的Elman神经网络的径流中长期预报[J]. 水文, 2006, 26(1): 45-50. QU Yaling, ZHOU Jian-zhong and LIU Fang. Medium and long- term runoff forecasting based on improved Elman neural net- work. Journal of China Hydrology, 2006, 26(1): 45-50. (in Chi- nese)

[11] 谢敏萍, 王志良, 王得利. 基于灰关联分析的多元线性回归模型在中长期水文预报中的应用[J]. 重庆科技学院学报, 2007, 9(2): 85-86. XIE Minping, WANG Zhiliang and WANG Deli. Application of multivariate linear regression model based on gray interaction analysis in medium and long term hydrologic forecast. Chong- qing Institute of Technology (Natural Science), 2007, 9(2): 85- 86. (in Chinese)

[12] 林剑艺, 程春田. 支持向量机在中长期径流预报中的应用[J]. 水利学报, 2006, 37(6): 681-686. LIN Jianyi, CHENG Chuntian. Application of support vector machine method to long-term runoff forecast. Shuili Xuebao, 2006, 37(6): 681-686. (in Chinese)

[13] 陈俊合, 陈小红. 工程水资源计算[M]. 广州: 广东高等教育出版社, 1996. CHEN Junhe, CHEN Xiaohong. Water resources by computing. Guangzhou: Guangdong Higher Education Press, 1996. (in Chi- nese)

[14] 申云. 基于人工神经网络和正规化周期回归的耦合模型及其应用[J]. 广东水利水电, 2009, (10): 1-4. SHEN Yun. Coupled model and its application based on artifi- cial neural networks and regularized cycle regression. Guang- dong Water Resources and Hydropower, 2009, (10): 1-4. (in Chinese)

[15] Prestes, A., RIGOZO, N.R., ECHER, E., et al. Spectral analysis of sunspot number and geomagnetic indices (1986-2001). Jour- nal of Atmosphere and Solar-Terrestrial Physics, 2006, 68(2): 182- 190.

[16] 王兆礼, 陈晓宏, 杨涛. 近50a东江流域径流变化及影响因素分析[J]. 自然资源学报, 2010, 25(8): 1365-1374. WANG Zhaoli, CHEN Xiaohong and YANG Tao. Runoff varia- tion and its impacting factors in the Dongjiang River Basin dur- ing 1956-2005. Journal of Natural Resources, 2010, 25(8): 1365- 1374. (in Chinese)

[17] 王萍. 珠江流域桔水期流量周期特征及影响因素分析[J]. 水利学报, 2007, (10): 379-382. WANG Ping. Analysis on the period characteristic of low flow in pearl river basin and effect factors. Shuili Xuebao, 2007, (10): 379-382. (in Chinese)

分享
Top