移动通信需求的聚合与分解预测方法研究
The Research of Aggregate and Disaggregate Approaches to Forecast Mobile Communications Demand

作者: 张泱博 , 张爱华 , 舒华英 :北京邮电大学服务管理科学研究所,北京;

关键词: 移动通信需求预测面板数据聚合方法分解方法类分解方法 Mobile Communications Demand Forecasting Panel Data The Aggregate Approach The Disaggregate Approach Quasi-Disaggregate Approaches

摘要:

本文分别运用聚合和分解的方法对预测需求总量的准确性进行对比,以确定采用何种方法预测移动通信需求量更为准确有效。在建立预测移动通信需求量的面板数据模型后,以预测全国移动通信用户数作为案例进行实证分析。研究表明,就汇总变量预测的平均绝对百分误差来说,分解方法优于聚合方法。此外,本文进一步研究了分解信息对移动通信需求总量预测准确性的影响,不仅分析了预测汇总变量的聚合与分解方法的预测表现,也分析了建立在分解预测基础上的类分解方法的预测表现。

Abstract: The paper uses the aggregation and disaggregation method separately to compare the accuracy of the forecast, in order to determine which method of forecasting the mobile communications demand is more accurate and effective. Panel data model is established to forecast the mobile communications demand and an empirical analysis is made based on forecasting the number of nationwide mobile communications users. The results show that the disaggregate approach outperforms the aggregate forecasting approach in terms of the mean absolute forecast errors of its demand predictions. Besides, this paper focuses on exploring the effect of disaggregate information on the accuracy of aggregate mobile communications demand forecasts. The paper also argues that the relative performances of aggregate and disaggregate approaches might depend on the specifics of the forecasting exercise, along with the performances of other approaches that are based on disaggregate approaches between these two extremes.

文章引用: 张泱博 , 张爱华 , 舒华英 (2013) 移动通信需求的聚合与分解预测方法研究。 服务科学和管理, 2, 15-20. doi: 10.12677/SSEM.2013.21003

参考文献

[1] 李勇平. 基于改进粒子群神经网络的电信业务预测模型研究[D]. 华南理工大学, 2009.

[2] R. T. Carson, T. Cenesizoglu and R. Parker. Forecasting (ag- gregate) demand for US commercial air travel. International Journal of Forecasting, 2010, 27(3): 923-941.

[3] N. Benalal, J. L. D. del Hoyo, B. Landau, M. Roma and F. Skudelny. To aggregate or not to aggregate? Euro area inflation forecasting. European Central Bank, 2004: Series No. 374.

[4] 孟鹏. 国内电信业务收入预测研究[D]. 吉林大学, 2007.

[5] 康国栋, 孙根年, 王美红. 我国邮电业发展的地域需求模型研究[J]. 统计与决策, 2008, 16: 95-97.

[6] 冯文权. 经济预测与决策技术(第五版)[M]. 武汉: 武汉大学出版社, 2009: 286-292.

[7] 巴蒂•H•巴尔塔基, 著, 白仲林等, 译. 面板数据计量经济分析(第四版) [M]. 北京: 机械工业出版社, 2010: 1-8.

[8] 元彦梅. 移动通信用户规模的预测分析. 大众科技[J]. 2006, 1: 63-64.

[9] 国家统计局. 中国统计年鉴[M]. 北京: 中国统计出版社, 2003-2010.

[10] 孙敬水. 计量经济学学习指导与Eviews应用指南[M]. 北京: 清华大学出版, 2010: 2-4, 372-373.

[11] 尹希果, 主编. 计量经济学原理与操作[M]. 重庆: 重庆大学出版社, 2009: 6-10.

[12] 何剑. 计量经济学实验和Eviews使用[M]. 北京: 中国统计出版社, 2010.

分享
Top