绝热量子泵浦的参数优化
Optimal Driving Parameters of Adiabatic Quantum Pumping

作者: 钟克菊 , 朱瑞 , 邓伟胤 , 邓文基 :华南理工大学物理系,广州; 肖运昌 :华南师范大学物电学院,广州;

关键词: 量子泵浦参数优化散射矩阵Quantum Pumping Optimal Driving Parameters Scattering Matrix

摘要: 量子泵浦是在无偏压的输运器件中通过调控系统参数随时间周期性变化而产生直流电流的物理过程。根据绝热量子泵浦理论,计算散射矩阵元及其对调控参数的导数在参数空间的面积分可以简单地得到泵浦过程的直流电流或泵浦电量。本文针对一维含时缓变双势垒驱动的量子泵浦模型,采用Berry曲率函数具体计算了不同的系统参数对泵浦电流大小取值的影响。以双参数线性驱动和简谐驱动为例,得到了产生最大泵浦电流的参数变化形式。另外,我们采用的理论方法既可以统一地处理多光子吸收和发射过程,又可以完全包涵泵浦电流随双势垒驱动参数相位差变化的所有高阶谐波项,加深对量子泵浦过程的非简谐效应的认识。

Abstract: The quantum pump phenomenon is that a dc current can be generated at zero bias in the transport device through regulation of system parameters that change periodically with time. According to the adiabatic quantum pump theory, the quantum pumping process of dc current or pump power can be got by using the area integral of the scattering matrix derivatives to the control parameters in the parameter space. In the present work, the quantum pump through a one-dimensional system with time-dependent double-δ-barrier potentials is considered. By introducing the Berry cur-vature function, we calculated the influence of the different system parameters to the pump current. Taking two linear and harmonic drivers as two examples, we achieved the parameter variation pattern to generate maximum pump current. In addition, our theoretical approach not only can analysis one-photon and multi-photon absorption and emission proc- esses within one framework, but also can be completely inclusion the higher order harmonics terms of pumped current as a function of the driving phase difference in double barrier, i.e. the anharmonic effects of quantum pump, are totally included in the parameter space integral.

文章引用: 钟克菊 , 朱瑞 , 肖运昌 , 邓伟胤 , 邓文基 (2013) 绝热量子泵浦的参数优化。 现代物理, 3, 32-37. doi: 10.12677/MP.2013.31006

参考文献

[1] D. J. Thouless. Quantization of particle transport. Physical Review B, 1983, 27(10): 6083-6087.

[2] M. Switkes, C. M. Marcus, K. Camp-man, et al. An adiabatic quantum electron pump. Science, 1999, 283: 1905-1908.

[3] L. P. Kouwenhoven, A. T. Johnson, N. C. van der Vaart, et al. Quantized current in a quantum-dot turnstile using oscil-lating tunnel barriers. Physical Review Letters, 1991, 67(12): 1626- 1630.

[4] H. C. Park, K. H. Ahn. Admittance and noise in an electri-cally driven nanostructure: Interplay between quantum coherence and statistics. Physical Review Letters, 2008, 101(11): 116804(4).

[5] J. Splettstoesser, M. Governale and J. König. Adiabatic charge and spin pumping through quantum dots with ferromagnetic leads. Physical Review B, 2008, 77(19): 195320(9).

[6] M. Strass, P. Hänggi and S. Kohler. Nonadiabatic electron pumping: Maximal current with mini-mal noise. Physical Review Letters, 2005, 95(13): 130601(4).

[7] F. Romeo, R. Citro. Adiabatic pumping in a double quantum dot structure with strong spin-orbit interaction. Physical Review B, 2009, 80(16): 165311(6).

[8] 李玲, B. Kaestner, M. D. Blumenthal等. 一种新型的高频半导体量子点单电子泵[J]. 物理学报, 2008, 57(3): 1878-1885.

[9] 吴凡, 王太宏. 通过单电子泵实现对单电子运动的控制及其相图分析[J]. 物理学报, 2003, 52(3): 696-702.

[10] R. Benjamin, C. Benjamin. Quantum spin pumping with adiabatically modulated magnetic barriers. Physical Review B, 2004, 69(8): 085318(10).

[11] R. Citro, F. Romeo. Pumping in a mesoscopic ring with Aharo- nov-Casher effect. Physical Review B, 2006, 73(23): 233304(4).

[12] P. Devillard, V. Gasparian and T. Martin. Charge pumping and noise in a one-dimensional wire with weak elec-tron-electron interactions. Physical Review B, 2008, 78(8): 085130(11).

[13] A. Agarwal , D. Sen. Equation of motion approach to non-adia- batic quantum charge pumping. Journal of Physics: Con-densed Matter, 2007, 19: 046205(13).

[14] N. Winkler, M. Governale and J. König. Diagrammatic real-time approach to adiabatic pumping through metallic single-electron devices. Physical Review B, 2009, 79(13): 235309(11).

[15] X. L. Qi , S. C. Zhang. Field-induced gap and quantized charge pumping in a nanoscale helical wire. Physical Review B, 2009, 79(23): 235442(6).

[16] R. Zhu, H. M. Chen. Quan-tum pumping with adiabatically modulated barriers in grapheme. Ap-plied Physics Letters, 2009, 95(12): 122111(3).

[17] G. Francesco, S. Panayotis, R. Stefano, et al. A Josephson quan- tum electron pump. Nature Physics, 2011, 7: 857-861.

[18] M. Büttiker, H. Thomas and A. Prêtre. Current partition in mul- tiprobe conductors in the presence of slowly oscillating external potentials. Zeitschrift für Physik B, 1994, 94: 133-137.

[19] P. W. Brouwer. Scattering approach to parametric pumping. Physical Review B, 1998, 58(16): 10135(4).

[20] M. Moskalets, M. Büttiker. Dissipation and noise in adiabatic quantum pumps. Physical Review B, 2002, 66(3): 035306(9).

[21] Y. Tserkovnyak, A. Brataas, G. E. W. Bauer, et al. Nonlocal magnetization dynamics in ferromagnetic heterostructures. Reviews of Modern Phys-ics, 2005, 77(4): 1375-1421.

[22] R. Zhu. A scattering matrix ap-proach to quantum pumping: Beyond the small-AC-driving-amplitude limit. Chinese Physics B, 2010, 19(12): 127201(6).

[23] O. En-tin-Wohlman, A. Aharony and Y. Levinson. Adiabatic transport in nanostructures. Physical Review B, 2002, 65(19): 195411(8).

[24] X. Di, M. C. Cheng and Q. Niu. Berry phase effects on electronic proper-ties. Reviews of Modern Physics, 2010, 82(3): 1959-2007.

分享
Top