FOA-SVR在交通流预测中的研究
SVR Based on FOA and Its Application in Traffic Flow Predication

作者: 朱伟 * , 李楠 , 石超峰 , 陈丙锋 :重庆交通大学交通运输学院,重庆;

关键词: 果蝇算法交通流预测支持向量回归机优化参数Fruit Fly Optimization Algorithm Traffic Flow Forecasting Support Vector Regression (SVR) Optimization Parameters

摘要:
交通流量预测是实现智能交通系统的重要工作。为了更准确地对交通流量进行预测,结合支持向量回归机(SVR)与果蝇算法(FOA),提出了FOA-SVR的交通流量预测模型。利用果蝇算法优化支持向量回归机的训练参数,以得到预测性能更好的支持向量回归预测模型。仿真结果表明,FOA-SVR模型比传统的支持向量机模型预测精度更高,可以更好的对交通流进行预测。

Abstract:
The accurate predication of traffic flow is an essential job in ITS. In order to predict traffic flow exactly, the FOA-SVR prediction model combining Support Vector Regression (SVR) and fruit fly optimization algorithm (FOA) is presented to forecast railway traffic flow. Using fruit fly optimization algorithm to optimize training parameters of Support Vector Regression, which can obtain superior SVR prediction model. The experiment results show that the FOA-SVR model has more accuracy, which provides a new approach for traffic flow prediction.

文章引用: 朱伟 , 李楠 , 石超峰 , 陈丙锋 (2013) FOA-SVR在交通流预测中的研究。 交通技术, 2, 6-9. doi: 10.12677/OJTT.2013.21002

参考文献

[1] 贺国光, 李宇, 马寿峰. 基于数学模型的短时交通流预测方法探讨[J]. 系统工程理论与实践, 2000, 12: 51-56.

[2] 杨兆升, 朱中. 基于卡尔曼滤波理论的交通流量实时预测模型[J]. 中国公路学报, 1999, 12(3): 63-67.

[3] 文培娜, 张志勇, 罗彬. 基于BP神经网络的北京物流需求预测及分析[J]. 物流技术, 2009, 6: 91-93.

[4] V. Vapnik. An overview of statistical learning theory. IEEE Transactions on Neural Networks, 1999, 10(5): 988-999.

[5] 孙煦, 陆化普, 吴娟. 基于蚁群优化算法的公路客运量预测[J]. 合肥工业大学学报, 2012, 1: 124-129.

[6] W.-T. Pan. A new fruit fly optimization algorithm: Taking the financial distress model as an example. Knowledge-Based Systems, 2011, 26: 69-74.

[7] 许智慧, 王福林, 孙丹丹, 王吉权. 基于FOA-RBF神经网络的外贸出口预测[J]. 数学的实践与认识, 2012, 13: 14-19.

[8] 张锐, 张涛, 高辉. RQEA-SVR在交通流预测中的作用[J]. 计算机工程与应用, 2010, 46(9): 241-245.

[9] 史峰, 王小川, 郁磊, 李洋. Matlab神经网络30个案例分析[M]. 北京: 北京航空航天出版社, 2011.

分享
Top