Fe76Si7.6B9.5P5C1.9薄膜的纵向驱动巨磁阻抗效应
The Longitudinally Driven Giant Magneto-Impedance Effect of Fe76Si7.6B9.5P5C1.9 Films

作者: 褚光 , 方允樟 , 何兴伟 , 马云 , 李文忠 :浙江师范大学数理与信息工程学院;

关键词: 巨磁阻抗效应薄膜纵向驱动灵敏度Giant Magneto-Impedance Effect Film Longitudinally Driven Sensitivity

摘要:
采用磁控溅射方法制备了单层Fe76Si7.6B9.5P5C1.9薄膜利用HP4294A型阻抗分析仪测量了经过不同温度退火3.0μm厚的FeSiBPC薄膜的纵向驱动巨磁阻抗效应。实验结果表明:经250退火的薄膜样品在190 kHz驱动频率下的最大巨磁阻抗比为157.32%,外场灵敏度为1.55%/(A∙m−1)
Fe76Si7.6B9.5P5C1.9 single-layer films were prepared by magnetron sputtering. An HP4294Aimpedance ana- lyzer was used to measure the curves of longitudinally driven giant magneto-impedance. Films with3.0mm thickness were annealed under different temperatures. The results showed that at a driven frequency of 190 kHz for the samples annealed at 250˚C, the maximum giant magneto-impedance effect of the samples with thickness of 3.0 μm is 157.32%. And the sensitivity of it is 1.55%/(A∙m−1).

文章引用: 褚光 , 方允樟 , 何兴伟 , 马云 , 李文忠 (2013) Fe76Si7.6B9.5P5C1.9薄膜的纵向驱动巨磁阻抗效应。 凝聚态物理学进展, 2, 17-20. doi: 10.12677/CMP.2013.21004

参考文献

[1] K. Mohri, T. Kohzawa, K. Kawashima, et al. Magneto-inductive effect in amorphous wires. IEEE Transactions on Magnetics, 1992, 28(5): 3150-3152.

[2] Z. C. Wang, F. F. Gong, X. L. Yang, et al. Longitudinally driven giant magnetoimpedance effect in stress-annealed Fe-based nano- crystalline ribbons. Journal of Applied Physics, 2000, 87(9): 4819- 4821.

[3] Y. Yoshizawa, S. Oguma and K. Yamauchi. New Fe-based soft magnetic alloys composed of ultrafine grain structure. Journal of Applied Physics, 1998, 64(10): 6044-6046.

[4] Z. H. Gan, H. Y. Yi, et al. Preparation of bulk amorphous Fe- Ni-P-B-Ga alloys from industrial raw materials. Scripta Ma- terialia, 2003, 48(11): 1543-1547.

[5] C. Chang, T. Kubota, et al. Synthesis of ferromagnetic Fe-based bulk glassy alloys in the Fe-Si-B-P-C system. Journal of Alloys and Compounds, 2009, 473(1-2): 368-372.

[6] M. L. Sartorelli, M. Knobel and J. Schoenmaker. Giant magneto-impedance and its relaxation in Co-Fe-Si-B amorphous ribbons. Applied Physics Letters, 1997, 75(15): 2208-2210.

[7] S. Q. Xiao, Y. H. Liu, L. Zhang, et al. Magneto-impedance in amorphous FeCuNbSiB films. Chinese Physics Letters, 1998, 15(10): 748-749.

[8] F. Amalou, M. A. Gijs. Giant magnetoimpedance in trilayer structures of patterned magnetic amorphous ribbons. Applied Physics Letters, 2002, 81(9): 1654-1656.

[9] V. Zhukova, M. Ipatov, et al. GMI effect in ultra-thin glass- coated co-rich amorphous wires. Sensors and Actuators B, 2007, 126(1): 232-234.

[10] L. V. Panina, K. Mohri and T. Uchiyama. Giant magneto-im- pedance (GMI) in amorphous wire, single layer and sandwich film. Physica A, 1997, 241(1-2): 429-438.

[11] 杨介信, 杨燮龙, 陈国等. 一种新型的纵向驱动巨磁阻抗效应[J]. 科学通报, 1998, 43(10): 1051-1053.

[12] 何理, 郑金菊, 金林枫等. 基于Fe基合金薄带巨磁阻抗效应的新型磁敏传感器[J]. 磁性材料与器件, 2009, 40(6): 40-43.

[13] R. L. Sommer, C. L. Chien. Longitudinal and transverse mag- neto-impedance in amorphous Fe73.5Cu1Nb3Si13.5B9 films. Applied Physics Letters, 1995, 67(22): 3346-3348.

[14] T. Kitoh, K. Mohri and T. Uchiyama. Asymmetrical magneto- impedance effect in twisted amorphous wires for sensitive mag- netic sensors. IEEE Transactions on Magnetics, 1995, 31(6): 3137- 3139.

[15] C. G. Kim, J. Jang, D. Y. Kim and S. S. Yoon. Analysis of asymmetric giant magneto impedance in field-annealed co-based amorphous ribbon. Applied Physics Letters, 1999, 75(2114): 2114- 2116.

[16] R. B. da Silva, A. D. C. Viegas, et al. High frequency mag- netoimpedance in Ni81Fe19/Fe50Mn50 exchange biased multilayer. Applied Physics Letters, 2009, 94(4): Article ID: 042501.

分享
Top