﻿ 大直径硅片微区电阻率的表征

# 大直径硅片微区电阻率的表征Characteristics for Resistivity in Micro-Areas on Large-Scale Silicon Slices

The improved Van der Pauw method and Rymazewski method, i.e., the contacts at the edge and the linear four-point probe in the original methods are replaced by square four-point probes, are introduced to measure the resis- tivity in micro-areas of silicon slices with large diameters. The charts for resistivity distribution on the silicon slices are plotted by classifying the measured data with the grey-level method and fuzzy mathematics. The plotted charts have been used to give engineers an instruction to make IC and to grow mono-crystal ingots with good achievements.

[1] 孙以材, 汪鹏, 孟庆浩. 电阻率测试理论与实践[M]. 北京: 冶金工业出版社, 2011.

[2] J. van der Pauw. A method of measuring spe-cific resistivity and Hall Effect for disks of arbitrary shape. Pilips Re-search Report, 1958, 13: 1-9.

[3] R. Rymuszewski. Empirical method of calibrating a 4-point mi- croarray for measuring thin-film-sheet re-sistance. Electronics Letters, 1967, 3(2): 57-58.

[4] 孙以材, 张林在. 用改进的Van der Pauw法测定方形微区的方块电阻[J]. 物理学报, 1994, 43(4): 530-539.

[5] Y. C. Sun, J. S. Shi and Q. H. Meng. Measurement of sheet resistance of cross micro areas using a modified Vander Pauw method. Semiconductor Science & Technology, 1996, 11(5): 805- 813.

[6] Y. C. Sun, O. Ehrmann, J. Wolf, et al. Determi-nation of the areas of a square sample suitable to the resistance meas-urement by Van der Pauw’s method. Review of Scientific Instruments, 1992, 63(7): 3757.

[7] Y. C. Sun, O. Ehrmann, J. Wolf, et al. The correction factors and their new curve for the measurement of sheet resistance of a square sample with a square four-point probe. Review of Scientific Instruments, 1992, 63(7): 3752.

[8] 孟庆浩, 孙新字, 孙以材. 薄层电阻测试Mapping技术[J]. 半导体学报, 1997, 18(9): 701-705.

[9] 孙以材, 刘新福, 高振斌, 孟庆浩, 孙冰. 微区薄层电阻四探针测试仪及其应用[J]. 固体电子学研究与进展, 2002, 22(1): 93-99.

[10] M. G. Buehler, W. R. Thurber. An experimental study of various cross sheet resistor test structures. Journal of the Elec-trochemical Society, 1978, 125(4): 645-649.

[11] 张艳辉, 孙以材, 刘新福, 陈志永. 斜置式方形探针测量单晶断面电阻率分布mapping技术[J]. 半导体学报, 2004, 25(6): 682-686.

[12] 刘新福, 孙以材, 张艳辉, 陈志永. 用改进的Rymaszewsk公式及方形四探针法测定微区的方块电阻[J]. 物理学报, 2004, 53(8): 2461-2466.

[13] 孙以材, 王伟, 屈怀泊. 四探针电阻率微区测量改进的Rymaszewski法厚度修正[J]. 纳米技术与精密工程, 2008, 6(6): 454-457.

[14] 孙以材, 潘国峰, 杨茂峰, 叶威, 张鹏. 绘制硅单晶电阻率等值线的Mapping技术[J]. 半导体学报, 2008, 29(7): 1281-1285.

[15] 孙以材, 石俊生. 在矩形样品中Rymazewski公式适用条件的分析[J]. 物理学报, 1995, 441(12): 1869-1878.

[16] 孙以材. 半导体测试技术[M]. 北京: 冶金工业出版社, 1984.

[17] 孙以材, 孟庆浩, 宫云梅, 赵卫萍, 武建平. 四探针Mapping自动测试仪中电阻率温度系数的规范化拟合多项式的应用[J]. 电子学报, 2005, 33(8): 1438-1441.

[18] 王静, 孙以材, 刘新福. 利用多项式拟合规范化方法实现范德堡函数的高精度反演[J]. 半导体学报, 2003, 24(8): 817- 821.

[19] H. L. Li, Y. C. Sun, W. Wang and H. Hutchinson. Neurocomputing Van der Pauw function for the measurement of a semiconductor’s resistivity without use of learning rate of weight vec-tor regulation. Chinese Journal of Semiconductors, 2011, 32(12): 122002-1-122002-8.

Top