大直径硅片微区电阻率的表征
Characteristics for Resistivity in Micro-Areas on Large-Scale Silicon Slices

作者: 孙冰 :天津计量监督检测科学研究院; 齐景爱 , 高金雍 , 张秀军 :河北工业大学;

关键词: 方形四探针微区电阻率测试范德堡和鲁美采夫斯基法数据的处理Square Four-Point Probe Resistivity Measurement in Micro-Areas Van der Pauw and Rymazewski Methods Data Processing

摘要:
介绍了改进的范德堡法和鲁美采夫斯基法,即此时用方形四探针分别替代边缘的触点和直线四探针,在大直径硅片上进行微区电阻率的测量。我们采用灰度法和模糊数学分类测得数据,并将它们分别在硅片上绘制出电阻率分布图。所得大型硅片上电阻率分布图已用于指导工程技术人员的集成电路生产和单晶锭生长,取得了较好的效果。
The improved Van der Pauw method and Rymazewski method, i.e., the contacts at the edge and the linear four-point probe in the original methods are replaced by square four-point probes, are introduced to measure the resis- tivity in micro-areas of silicon slices with large diameters. The charts for resistivity distribution on the silicon slices are plotted by classifying the measured data with the grey-level method and fuzzy mathematics. The plotted charts have been used to give engineers an instruction to make IC and to grow mono-crystal ingots with good achievements.

文章引用: 孙冰 , 齐景爱 , 高金雍 , 张秀军 (2013) 大直径硅片微区电阻率的表征。 凝聚态物理学进展, 2, 5-11. doi: 10.12677/CMP.2013.21002

参考文献

[1] 孙以材, 汪鹏, 孟庆浩. 电阻率测试理论与实践[M]. 北京: 冶金工业出版社, 2011.

[2] J. van der Pauw. A method of measuring spe-cific resistivity and Hall Effect for disks of arbitrary shape. Pilips Re-search Report, 1958, 13: 1-9.

[3] R. Rymuszewski. Empirical method of calibrating a 4-point mi- croarray for measuring thin-film-sheet re-sistance. Electronics Letters, 1967, 3(2): 57-58.

[4] 孙以材, 张林在. 用改进的Van der Pauw法测定方形微区的方块电阻[J]. 物理学报, 1994, 43(4): 530-539.

[5] Y. C. Sun, J. S. Shi and Q. H. Meng. Measurement of sheet resistance of cross micro areas using a modified Vander Pauw method. Semiconductor Science & Technology, 1996, 11(5): 805- 813.

[6] Y. C. Sun, O. Ehrmann, J. Wolf, et al. Determi-nation of the areas of a square sample suitable to the resistance meas-urement by Van der Pauw’s method. Review of Scientific Instruments, 1992, 63(7): 3757.

[7] Y. C. Sun, O. Ehrmann, J. Wolf, et al. The correction factors and their new curve for the measurement of sheet resistance of a square sample with a square four-point probe. Review of Scientific Instruments, 1992, 63(7): 3752.

[8] 孟庆浩, 孙新字, 孙以材. 薄层电阻测试Mapping技术[J]. 半导体学报, 1997, 18(9): 701-705.

[9] 孙以材, 刘新福, 高振斌, 孟庆浩, 孙冰. 微区薄层电阻四探针测试仪及其应用[J]. 固体电子学研究与进展, 2002, 22(1): 93-99.

[10] M. G. Buehler, W. R. Thurber. An experimental study of various cross sheet resistor test structures. Journal of the Elec-trochemical Society, 1978, 125(4): 645-649.

[11] 张艳辉, 孙以材, 刘新福, 陈志永. 斜置式方形探针测量单晶断面电阻率分布mapping技术[J]. 半导体学报, 2004, 25(6): 682-686.

[12] 刘新福, 孙以材, 张艳辉, 陈志永. 用改进的Rymaszewsk公式及方形四探针法测定微区的方块电阻[J]. 物理学报, 2004, 53(8): 2461-2466.

[13] 孙以材, 王伟, 屈怀泊. 四探针电阻率微区测量改进的Rymaszewski法厚度修正[J]. 纳米技术与精密工程, 2008, 6(6): 454-457.

[14] 孙以材, 潘国峰, 杨茂峰, 叶威, 张鹏. 绘制硅单晶电阻率等值线的Mapping技术[J]. 半导体学报, 2008, 29(7): 1281-1285.

[15] 孙以材, 石俊生. 在矩形样品中Rymazewski公式适用条件的分析[J]. 物理学报, 1995, 441(12): 1869-1878.

[16] 孙以材. 半导体测试技术[M]. 北京: 冶金工业出版社, 1984.

[17] 孙以材, 孟庆浩, 宫云梅, 赵卫萍, 武建平. 四探针Mapping自动测试仪中电阻率温度系数的规范化拟合多项式的应用[J]. 电子学报, 2005, 33(8): 1438-1441.

[18] 王静, 孙以材, 刘新福. 利用多项式拟合规范化方法实现范德堡函数的高精度反演[J]. 半导体学报, 2003, 24(8): 817- 821.

[19] H. L. Li, Y. C. Sun, W. Wang and H. Hutchinson. Neurocomputing Van der Pauw function for the measurement of a semiconductor’s resistivity without use of learning rate of weight vec-tor regulation. Chinese Journal of Semiconductors, 2011, 32(12): 122002-1-122002-8.

分享
Top