原子蒸汽压与多普勒效应对量子相干气体光学特性的影响
Influence of Vapor Pressure and Doppler Effect on the Optical Property of a Coherent Atomic Vapor

作者: 赵 行 , 梅胜涛 :浙江大学光电信息工程学系,现代光学仪器国家重点实验室,杭州; 沈建其 :浙江大学光电信息工程学系,现代光学仪器国家重点实验室,杭州;浙江大学光及电磁波研究中心,杭州;

关键词: 量子相干原子气体饱和蒸汽多普勒效应色散行为 Quantum Coherent Atomic Vapor Saturated Vapor Doppler Effect Dispersion Characteristics

摘要:

研究了在不同温度下三能级相干原子气体的光学特性(介电系数和群速)色散行为。求解三能级原子系统完备密度矩阵方程,得到所有密度矩阵元的色散行为,然后考虑多普勒频移修正和原子气体饱和蒸汽压(饱和密度)随着温度的变化关系,进行数值求解,给出了探针光群速的色散行为及与原子蒸汽温度的函数依赖关系图示。本文所研究的不同温度下三能级相干原子气体的光学特性可以作为某些温控光子学器件(如光子开关、光逻辑门、光子晶体管)的基本物理原理。

The dependence of dispersion characteristics of electric permittivity and group velocity on the temperature in a three-level quantum coherent atomic vapor is considered based on the numerical solution of the density matrix equation of the three-level atomic system. The behavior of dispersion of all the density matrix elements has been obtained, and both the Doppler frequency shift and the saturation density that depend upon the temperature of the saturated atomic vapor have been taken into account. The presented optical response of the quantum coherent vapor can be utilized as a fundamental mechanism for some temperature-controlled photonic devices such as optical switches, photonic logic gates and optical transistors.



Abstract:



Abstract:

文章引用: 赵 行 , 梅胜涛 , 沈建其 (2013) 原子蒸汽压与多普勒效应对量子相干气体光学特性的影响。 应用物理, 3, 18-25. doi: 10.12677/APP.2013.31005

参考文献

[1] J. Q. Shen. Classical & quantum optical properties of artificial elec-tromagnetic media. Kerala: Transworld Research Network, 2008.

[2] S. E. Harris. Electromagnetically induced transparency. Physics Today, 1997, 50(7): 36-42.

[3] J. Q. Shen. Transient evolu-tional behaviors of double-control electromagnetically induced trans-parency. New Journal of Phy- sics, 2007, 9: 374-378.

[4] C. F. Roos, D. Leibfried, A. Mundt, F. Schmidt-Kaler, J. Eschner and R. Blatt. Experimental demonstration of ground state laser cooling with elec-tromagnetically induced transparency. Physical Review Letters, 2000, 85(26): 5547-5550.

[5] C. Champenois, G. Morigi and J. Eschner. Quantum coherence and population trapping in three-photon processes. Physical Re- view A, 2006, 74: Article ID: 053404.

[6] J. Cheng, S. Han. Electromagnetically induced self-imaging. Optics Letters, 2007, 32(9): 1162-1164.

[7] A. M. Zheltikov. Phase coherence control and subcycle transient detection in nonlinear Raman scattering with ul-trashort laser pulses. Physical Review A, 2007, 74: Article ID: 053403.

[8] A. Gandman, L. Chuntonov, L. Rybak and Z. Amitay. Coherent phase control of resonance-mediated (2 + 1) three-photon ab- sorption. Physical Review A, 2007, 75: Article ID: 031401.

[9] H. Pettersson, L. Landin, M. Kleverman, W. Seifert, L. Samuel- son, Y. Fu and M. Willander. Intersubband photoconductivity of self-assembled InAs quantum dots embedded in InP. Journal of Applied Physics, 2004, 95(4): 1829-1831.

[10] Y. Fu, O. Engström and Y. Luo. Emission rates for electron tun- neling from InAs quantum dots to GaAs sub-strate. Journal of Applied Physics, 2004, 96(11): 6477-6481.

[11] J. Siegert, S. Marcinkevivius and Q. X. Zhao. Carrier dynamics in modulation-doped InAs/GaAs quantum dots. Physical Review B, 2005, 72: Article ID: 085316.

[12] M. O. Scully, M. S. Zubairy. Quantum optics. Chapt 5. Cam- bridge: Cambridge University Press, 1997.

[13] L. V. Hau, S. E. Harris, Z. Dutton and C. H. Behroozi. Light speed reduction to 17 metres per second in an ultracold atomic gas. Nature, 1999, 397(6720): 594-598.

[14] D. F. Phillips, M. Fleischhauer, A. Mair, R. L. Walsworth and M. D. Lukin. Storage of light in atomic vapor. Physical Review Let- ters, 2001, 86(5): 783-786.

[15] M. D. Lukin, S. F. Yelin and M. Fleischhauer. Entanglement of atomic ensembles by trapping correlated photon states. Physical Re-view Letters, 2000, 84(18): 4232-4235.

[16] J. Q. Shen, P. Zhang. Double-control quantum interferences in a four-level atomic system. Optics Express, 2007, 15(10): 6484- 6493.

[17] T.-C. Liau, J.-J. Wu, J. Q. Shen and T.-J. Yang. Frequency-sensi- tive optical response via tunable band structure in an EIT-based layered medium. Advanced Materials Research, 2011, 160-162: 1432-1439.

[18] Y. Q. Ye, Y. Jin, F. Zhuang and J. Q. Shen. Manipulation of probe light propagations with EIT photonic crystals. Classical & Quantum Optical Properties of Artificial Electromagnetic Media. Kerala: Transworld Research Net-work, 2008: Chap 7.

[19] Y. Q. Ye, J. Q. Shen and Y. Jin. Manipulat-ing light flow with one-dimensional photonic crystals of an electro-magnetically in- duced transparency medium. Applied Physics A, 2008, 93(2): 505-509.

[20] 汪志诚. 热力学与统计物理(第三版)[M]. 北京: 高等教育出版社, 2003: 118.

[21] 李福利. 高等激光物理学[M]. 合肥: 中国科学技术大学出版社, 1992: 49.

分享
Top