固体微/纳薄膜的导热性质研究
Size Dependence of Solid Micro/Nano-Film Thermal Conductivity

作者: 杨培广 :德州亚太集团有限公司,德州;

关键词: 热导率分子动力学表面热阻声子散射理论 Thermal Conductivity Molecular Dynamics Thermal Surface Resistance Phonon Scattering Theory

摘要:

本文基于表面热阻的概念导出一种固体微/纳薄膜热导率与尺寸关系的模型。该模型表明固体薄膜热导率倒数与薄膜厚度倒数之间存在线性关系,其斜率和截距分别是表面热阻和固体材料热导率的倒数。本文通过用分子动力学模拟计算厚度为2~14 nm的固体氩晶体薄膜热导率验证了该模型的正确性,并且用声子散射理论和文献数据对其加以佐证。

A model on the size dependence of the thermal conductivity of solid micro/nano-film is derived based on a concept named thermal surface resistance. The model shows a linear relationship between the reciprocals of the normal thermal conductivity of solid thin films and the film thickness, whose slope and intercept are respectively the thermal surface resistance and the reciprocal of the corresponding bulk thermal conductivity. It is confirmed not only by our molecular dynamics simulations of the thermal conductivity of solid argon crystal films with thickness of 2 - 14 nm, but also by phonon scattering theory and data in literatures.



Abstract:

 

文章引用: 杨培广 (2013) 固体微/纳薄膜的导热性质研究。 应用物理, 3, 9-12. doi: 10.12677/APP.2013.31003

参考文献

[1] C. L. Tien, A. Majumdar and F. Gerner. Microscale energy transport series in chemical and mechanical engineering. Wash- ington DC: Taylor & Francis, 1998.

[2] 过增元. 国际传热研究前沿—微细尺度传热[J]. 力学进展, 2000, 30(1): 1-6.

[3] F. C. Chou, J. R. Lukes, X. G. Liang, K. Takahashi and C. L. Tien. Molecular dynamics in microscale thermophysical engineering. Annual Review of Heat Transfer, 1999, 10: 141-176.

[4] D. G. Cahill, W. K. Ford, G. D. Mahan, A. Majumdar, H. J. Maris, R. Merlin and S. R. Phillpot. Nanoscale thermal transport. Journal of Applied Physics, 2003, 93(2): 793-818.

[5] J. E. Graebner, M. E. Reiss, L. Seibles, T. M. Hartnett, R. P. Miller and C. J. Robinson. Phonon scattering in chemical-vapor- deposited diamond. Physical Review B, 1994, 50(6): 3702-3713.

[6] T. F. Zeng, G. Chen. Phonon heat conduction in thin films: Im- pacts of thermal boundary resistance and internal heat genera- tion. Journal of Heat Transfer, 2001, 123(2): 340-347.

[7] P. Chantrenne and J. L. Barrat. Analytical model for the thermal conductivity of nanostructure. Superlattices Microstruct, 2004, 35(3): 173-186 .

[8] J. R. Lukes, D. Y. Li, X. G. Liang and C. L. Tien. Molecular study of solid-thin thermal conductivity. Journal of Heat Transfer, 2000, 122(3): 421-429.

[9] X. L. Feng, Z. X. Li and Z. Y. Guo. Size effect of lattice thermal conductivity across nanoscale thin films by molecular dynamics simulations. Chinese Physics Letters, 2001, 18(3): 416.

[10] X. L. Feng, Z. X. Li and Z. Y. Guo. Molecular dynamics simula- tion of thermal conductivity of nanoscale thin silicon films. Mi- croscale Thermophysical Engineering, 2003, 7(2): 153-161.

[11] Q. H. Tang. A molecular dynamics simulation: the effect of finite size on the thermal conductivity in a single crystal silicon. Mole- cular Physics, 2004, 102(18): 1959-1964.

[12] 吴国强, 孔宪仁, 王亚辉. 氩晶体薄膜法向热导率的分子动力学模拟[J]. 物理学报, 2006, 55(1): 1-5.

[13] K. E. Goodson, O. W. Kading, M. Rosler and R. Zachai. Experi- mental investigation of thermal conductivity normal to diamond- silicon boundaries. Journal of Applied Physics, 1995, 77(4): 1385- 1392.

[14] S. M. Lee, D. G. Cahill. Heat transport in thin dielectric films. Journal of Applied Physics, 1997, 81(6): 2590-2995.

[15] B. L. Zink, R. Pietri and F. Hellman. Thermal conductivity and specific heat of thin-film amorphous silicon. Physical Review Letters, 2006, 96(5): Article ID: 055902.

[16] C. Anderson and K. K. Tamma. An overview of advances in heat conduction models and approaches for prediction of thermal conductivity in thin dielectric films. International Journal of Numerical Methods for Heat & Fluid Flow, 2004, 14(1): 12-65.

[17] E. T. Swartz, R. O. Pohl. Thermal boundary resistance. Reviews of Modern Physics, 1989, 61(3): 605-668.

[18] S. R. Phillpot, P. K. Schelling and P. Keblinski. Interfacial ther- mal conductivity: Insights from atomic level simulation. Journal of Materials Science, 2005, 40(12): 3143-3148.

[19] P. K. Schelling, S. R. Phillpot and P. Keblinski. Comparison of atomic-level simulation methods for computing thermal conduc- tivity. Physical Review B, 2002, 65(14): Article ID:144306.

[20] C. Oligschleger, J. C. Schion. Simulation of thermal conducti- vity and heat transfer in solids. Physical Review B, 1999, 59(6): 4125-4133.

[21] F. Muller-Plathe. A simple nonequilibrium molecular-dynamics method for calculation the thermal-conductivity. Journal of Che- mical Physics, 1997, 106(14): 6082-6085.

[22] M. P. Allen, D. J. Tildesley. Computer simulation of liquids. Ox- ford: Clarendon Press, 1987.

分享
Top