三角环上的Jordan可导映射
Jordan Derivable Maps on Triangular Rings

作者: 张慧愿 , 薛春慧 , 安润玲 :太原理工大学数学学院;

关键词: Jordan导子CDCSL代数三角环套代数Jordan Derivation CDCSL Algebras Triangular Rings Nest Algebras

摘要:
是一个三角环。我们称(无可加或连续假设)是一个Jordan可导映射,若对任意的。本文我们证明了三角环上的Jordan可导映射是导子。利用此结论我们得到不可约CDCSL代数上或套代数上的每个Jordan可导映射是导子。

Abstract: Let be a triangular ring. We say is a Jordanderivable map if for every . In this paper, we show that everyJordanderivable map on triangular rings is a derivation. As its application, we get aJordanderivable map on irreducible CDCSL algebras or nest algebra is a derivation.

文章引用: 张慧愿 , 薛春慧 , 安润玲 (2013) 三角环上的Jordan可导映射。 理论数学, 3, 95-100. doi: 10.12677/PM.2013.31015

参考文献

[1] W. S. Matindale III. When are multiplicative mappings additive? Proceedings of the American Mathematical Society, 1969, 21(3): 695-698.

[2] L. Molnár. On isomorphisms of standard operator algebras. Studies in Mathematics, 2000, 142: 295-302.

[3] R. L. An, J. C. Hou. Additivity of Jordan multiplicative maps on Jordan Operator algebras. Taiwanese Journal of Mathematics, 2006, 10(1): 45-64.

[4] M. N. Daif. When is a multiplicative derivation additive? International Journal of Mathematics and Mathematical Sciences, 1991, 14: 615-618.

[5] C. J. Hou, W. M. Zhang and Q. Meng. A note on -derivations. Linear Algebra and Its Applications, 2010, 432: 2600-2607.

[6] F. Y. Lu. Jordan derivable maps of prime rings. Communications in Algebra, 2010, 32: 4430-4440.

[7] D. G. Han. Continuity and linearity of additive derivation of nest algebras on Banach spaces. Chinese Annals of Mathematics, Series B, 1996, 17: 227-236.

[8] F. Lu. Lie isomorphisms of reflexive algebras. Journal of Functional Analysis, 2006, 240(1): 84-104.

[9] F. Gilfeather, A. R. Larson. Nest-subalgebras of von Neumann algebras. Advances in Mathematics, 1982, 46(2): 171-199.

分享
Top