变指数空间上的与自伴算子相联的Littlewood-Paley函数
The Littlewood-Paley Function Associated to Self-Adjoint Operators on Variable Exponent Spaces

作者: 龚汝明 :广州大学数学与信息科学学院; 谢佩珠 :广州大学数学与交叉科学广东普通高校重点实验室;

关键词: Littlewood-Paley函数自伴算子变指数空间Littlewood-Paley Function Self-Adjoint Operators Variable Exponent Spaces

摘要:
本文研究了与非负自伴且热核满足Gaussian上界的算子相联系的Littlewood-Paley函数在一般的变指数空间上的有界性。

Abstract:
In this article, we prove norm inequalities for the Littlewood-Paley function associated to a non- negative self-adjoint operator satisfying a pointwise Gaussian estimate for its heat kernel on generalized spaces with variable exponent.

文章引用: 龚汝明 , 谢佩珠 (2013) 变指数空间上的与自伴算子相联的Littlewood-Paley函数。 理论数学, 3, 46-50. doi: 10.12677/PM.2013.31008

参考文献

[1] L. Diening. Maximal functions on generalized spaces. Mathematical Inequalities and Applications, 2004, 7(2): 245-253.

[2] D. Edmunds and J. Rakosnik. Sobolev embeddings with variable exponent. Studia Mathematica, 2000, 143(3): 267-293.

[3] D. Cruz-Uribe, A. Fiorenza and C. Neugebauer. The maximal function on variable spaces. Annales Academiæ Scientiarum Fennicæ Mathematica, 2003, 28(1): 223-238.

[4] D. Cruz-Uribe, A. Fiorenza, J. Martell, et al. The boundedness of classical operators on variable spaces. Annales Academiæ Scientiarum Fennicæ Mathematica, 2006, 31(1): 239-264.

[5] L. Diening. Riesz potentials and Sobolev embeddings on generalized Lebesgue and Sobolev spaces and . Mathematische Nachrichten, 2004, 268(1): 31-43.

[6] A. Karlovich, A. Lerner. Commutators of singular integrals on generalized spaces with variable exponen. Publicacions Matemàtiques, 2005, 49(1): 111-125.

[7] V. Kokilashvili, S. Samko. Singular integrals in weighted Lebesgue spaces with variable exponent. Georgian Mathematical Journal, 2003, 10(1): 145-156.

[8] A. Nekvinda. Hardy-Littlewood maximal operator on . Mathematical Inequalities and Applications, 2004, 7(2): 255-265.

[9] P. Auscher. On necessary and sufficient conditions for -estimates of Riesz transforms associated to elliptic operators on and related estimates. Memoirs of the American Mathematical Society, 2007, 186(871).

[10] T. Coulhon, X. Duong and X. Li. Littlewood-Paley-Stein functions on complete Riemannian manifolds for . Studia Mathematica, 2003, 154(1): 37-57.

[11] R. Gong, P. Xie. Weighted estimates for the area integral associated to self-adjoint operators on homogeneous space. Journal of Mathematical Analysis and Applications, 2012, 393(2): 590-604.

[12] E. Stein. Harmonic analysis: Real variable methods, orthogonality and oscillatory integrals. Princeton: Princeton University Press, 1993.

分享
Top