裂项法导出二项式系数倒数级数
The Series of Reciprocals of Binomial Coefficients Constructing by Splitting Terms

作者: 及万会 * , 黑宝骊 :银川能源学院基础部;

关键词: 二项式系数倒数裂项级数封闭型 Binomial Coefficients Reciprocals Split Terms Series Form Closed

摘要: 根据一个已知级数,使用裂项方法得到分母含有15个奇因子的二项式系数倒数级数,所给出二项式系数倒数级数的和式是封闭形的。并给出二项式系数数倒数值级数恒等式。裂项方法研究二项式系数变换是组合分析的新手段,也是产生新级数的一个初等方法。

Abstract: Using one known series, we can structure several new series of reciprocals of binominal coefficients by splitting items. These denominators of series contains different the multiplication of one to five odd factors and binominal coefficients. And some identities of series of numbers values of reciprocals of binominal coefficients are given. The method of split items offered in this paper is a new combinatorial analysis way and a elementary method to construct new series.

文章引用: 及万会 , 黑宝骊 (2013) 裂项法导出二项式系数倒数级数。 理论数学, 3, 18-30. doi: 10.12677/PM.2013.31005

参考文献

[1] B. Sury, T. N. Wang and F.-Z. Zhao. Some identities involving of binomial coefficients. Journal of Integer Sequences, 2004, 7: Article ID: 04.2.8.

[2] J.-H. Yang, F.-Z. Zhao. Sums involving the inverses of binomial coefficients. Journal of Integer Sequences, 2006, 9: Article ID: 06.4.2.

[3] S. Amghibech. On sum involving Binomial coefficient. Journal of Integer Sequences, 2007, 10: Article ID: 07.2.1.

[4] T. Trif. Combinatorial sums and series involving inverses of binomial coefficients. Fibonacci Quarterly, 2000, 38(1): 79-84.

[5] F.-Z. Zhao, T. Wang. Some results for sums of the inverses of binomial coefficients, integers. The Electronic Journal of Combinatorial Number Theory, 2005, 5(1): A22.

[6] R. Sprugnoli. Sums of reciprocals of the central binomial coefficients, integers. The Electronic Journal of Combinatorial Number Theory, 2006, 6: A27.

[7] 及万会, 张来萍. 关于正负相间二项式系数倒数级数[J]. 理论数学, 2012, 2(4): 192-201.

[8] I. S. Gradshteyn, I. M. Zyzhik. A table of integral, series, and products (7th Edition). Burlington: Academic Press, 2007: 56, 61.

分享
Top