Diffusion Welding SiC Ceramic/Tungsten by SPS

作者: 张金咏 , 魏倩倩 , 张 帆 , 王玉成 , 傅正义 :武汉理工大学材料复合新技术国家重点实验室;

关键词: 放电等离子烧结SiC陶瓷扩散焊接Spark Plasma Sintering SiC Ceramic Tungsten Diffusion Welding Technology

本文采用放电等离子烧结(SPS)技术,对用于高温环境下服役的SiC陶瓷扩散焊接进行了探索研究。结果表明,采用SPS技术可以在1300~1500实现SiC/W的连接。在SPS扩散焊接条件下SiCW在界面处会发生化学反应,形成一个主要组分为WCSi3W5等新相的过渡层,且随着焊接时间延长和温度升高,W持续向SiC层扩散在过渡层和SiC的界面上形成新的反应物,从而导致过渡层的厚度增加。过渡层的厚度对焊接件性能的影响呈现非线性变化,对焊接件的三点弯曲强度测试表明:在1410时,保温5 min,材料在界面处的弯曲强度达到最高,约162 MPa。对焊接后金属钨的结构分析显示,高温过程对钨的微结构没有明显的改变,断裂方式仍为延性断裂。显然,SPS可以成为一种快速、有效的SiC陶瓷/金属W扩散焊接技术
>Spark plasma sintering (SPS) as a diffusion welding method was used to bond SiC ceramic and tungsten which was hoped to be used under high temperature environment. Results show that SiC and tungsten could be bonded by SPS technology at the welding temperature during 1300˚C - 1500˚C. And the interfacial microstructure analysis show that an intermediate layer (including new phases WC, W2C, Si3W5) formed rapidly between SiC and tungsten due to the interface chemical reaction under SPS extra field. Thickness of the intermediate layer was found increasing with the welding temperature and duration increasing because of W diffusion through the intermediate layer. Effect of inter- mediate layer thickness on the welded sample performance is nonlinear. The maximum bending strength of bonded SiC/W was 162 MPa with a welding temperature of 1410˚C and a duration of 5 mins. High temperature processing showed no obvious effects on microstructure and fracture behavior of W metal substrate. It seems that SPS could be a fast and effective diffusion welding technology for ceramic (SiC)-high temperature alloy (W).

文章引用: 张金咏 , 魏倩倩 , 张 帆 , 王玉成 , 傅正义 (2013) SiC陶瓷/金属钨的SPS扩散焊接。 材料科学, 3, 7-10. doi: 10.12677/MS.2013.31002


[1] T. Hinoki, L. L. Snead, T. Taguchi, et al. Ceramic transactions. Westerville: American Ceramic Society, 2002: 144.

[2] 闫联生, 李贺军, 崔红, 张晓虎. 超高温抗氧化复合材料研究进展[J]. 材料导报, 2004, 12: 50-55.

[3] 张红波, 尹健, 熊翔. C/C复合材料烧蚀性能的研究进展[J]. 材料导报, 2005, 1(7): 36.

[4] L. L. Snead, R. H. Jones, A. Kohyama and P. Fenici. Status of silicon carbide composites for fusion. Journal of Nuclear Mate- rials, 1996, 233-237: 26-36.

[5] S. P. Lee, Y. Katoh, J. S. Park, et al. Microstructure and me- chanical characteristics of SiC/SiC composites with modified- RS process. Journal of Nuclear Materials, 2001, 289(1-2): 30- 36.

[6] A. Kohyama, M. Kotani, Y. Katoh, et al. High-performance SiC/ SiC composites by improved PIP processing with new precursor polymers. Journal of Nuclear Materials, 2000, 283-287: 565- 569.

[7] 邢世凯. 陶瓷–金属连接工艺研究现状及进展[J]. 材料保护, 2004, 37(5): 35-38.

[8] 钱耀川, 丁华东, 傅苏黎. 陶瓷–金属焊接的方法与技术. 材料导报, 2005, 19(11): 98-104.

[9] J. Galy, M. Dolle and T. Hungria. A new way to make solid state chemistry: Spark plasma synthesis of copper or silver vanadium oxide bronzes. Solid State Sciences, 2008, 10(8): 976-981.

[10] M. Omori. Sintering, consolidation, reaction and crystal growth by the spark plasma system (SPS). Materials Science and Engi- neering: A, 2000, 287(2): 183-188.

[11] J. Y. Zhang, F. C. Meng, R. I. Todd and Z. Y. Fu. The nature of grain boundaries in alumina fabricated by fast sintering. Scripta Materialia, 2010, 62(9): 658-661.

[12] 罗永明, 潘伟, 陈健, 郑任远. SiC/W层状复合材料力学性能和显微结构研究[J]. 材料导报, 2000, 5(14): 49-51.