使用调制相移法测量光纤色散的研究
A Study of Dispersion Measurement for Optical Fiber by Phase-Modulation Method

作者: 张曦 , 刘小英 , 周镇辉 :华中科技大学光电子科学与工程学院;

关键词: 光纤通信光纤色散调制相移法调制频率Optical Fiber Communication Fiber Dispersion Modulation Phase Shift Method Modulation Frequency

摘要:

光纤通信已经成为目前通信网络发展的主流方向。但是随着光纤通信系统向着超远距离、超大容量、超高速率的方向发展,光纤色散已经成为其巨大的阻碍。如何有效地控制光通信系统中产生的色散,使光信号在大容量、高速率、长距离传输中无误码地到达接收端,已经成为人们迫切需要解决的问题。对光通信系统中的色散进行监测并进行动态补偿的研究,使得超大容量、超长距离、超高速率的光纤通信系统成为可能,有助于最终实现全光智能自动交换网络。在众多测量光纤色散的方法中,调制相移法具有结构简单,可靠性强等优点。本文中,我们对使用调制相移法测量光纤色散进行了研究和仿真,讨论了在不同光纤长度和不同调制频率下,影响调制相移法测量结果精度的因素。通过适当地选取调制频率,我们可以使用调制相移法测得不同光纤长度下色散的精确值。另外在本文中,我们通过仿真验证了调制相移法可以测量具有任意色散波长曲线的光纤。因此在实际应用中,调制相移法是可以应用于高精度光纤色散的测量。

Optical fiber communication is the mainstream of communication development at present. However, with the development of optical fiber communication system which trending towards ultra-long length, ultra-large capacity and ultra-high speed, fiber dispersion turned to be a great obstacle. How to control the dispersion created in the optical communication system effectively while force optical signal to reach the receiving end in high-capacity, high-rate and error-free long-distance transmission has increasingly become a research focus of optical fiber communication systems. It is a great significance to research about monitor and dynamic compensate dispersion in the optical communication systems, so that the ultra-large capacity, ultra-long length and ultra-high speed optical fiber communication systems would not be impossible, all-optical intelligent network with automatic switching functions would come true. Among the varieties of methods to measure fiber dispersion, the phase-modulation shift method is the unique one, which has the advantages of simple structure, high reliability. In this paper, we make a research and simulate to use the phase-modulation shift method, meanwhile we also discuss about the factors which affect the accuracy of the results in the different fiber lengths and modulation frequencies. By the means that selecting appropriate modulation frequency, we can use modulation phase shift method to measure the exact value of dispersion comes out from different lengths of fiber. Moreover, this paper also proves that the phase-modulation shift method is able to measure the optical fiber with arbitrary dispersion-wavelength curve, which is already verified by our simulation. Therefore, the phase-modulation shift method is well to be applied to take practice in the high-precision fiber dispersion measurement.

 

 

文章引用: 张曦 , 刘小英 , 周镇辉 (2012) 使用调制相移法测量光纤色散的研究。 光电子, 2, 19-25. doi: 10.12677/OE.2012.24004

参考文献

[1] 苏坚. 基于光子晶体的THz波调制器特性研究[D]. 南京邮电大学.

[2] 苏坚, 陈鹤鸣. 基于液晶光子晶体的太赫兹波调制器[J]. 光学学报, 2010, 30(9): 2710-2713.

[3] 王江涛, 陈向宁. 铁电液晶光寻址空间光调制器性能分析[J]. 应用光学, 2012, 33(1): 57-63.

[4] 张彬, 毛陆虹, 谢生, 郭维廉, 陈燕, 于欣, 张世林. 硅基环形电——光调制器的理论分析和性能优化[J]. 天津大学学报, 2010, 43(3): 189-193.

[5] 陈燕, 张世林, 张彬, 毛陆虹, 郭维廉. 光调制器综述[J]. 半导体技术, 2008, 33(4): 286-288.

[6] 陈鹤鸣, 王国栋. 一种新型缺陷模迁移光子晶体全光开关设计[J]. 光学学报, 2011, 31(3): 167-272.

[7] H. M. Chen, et al. Optically-controlled high-speed terahertz wave modulator based on nonlinear photonic crystals. Optics Express, 2011, 19(4): 3599-3603.

[8] 马锡英. 光子晶体原理及应用[M]. 北京: 科学出版社, 2010.

[9] M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi and T. Tanabe. Optical bistable switching action of Si high-Q photonic- crystal nanocavities. Optics Express, 2005, 13(7): 2678-2687.

[10] 刘培生. 晶体点缺陷基础[M]. 北京: 科学出版社, 2010.

[11] 李陶德瑾. 基于复试晶格光子晶体THz波调制器特性的研究[D]. 南京邮电大学.

[12] 卢俊, 王丹, 陈亚孚. 光电子器件物理学[M]. 北京: 电子工业出版社, 2009: 233-245.

[13] H. F. Tiedje, H. K. Haugen and J. S. Preston. Measurement of nonlinear absorption coefficients in GaAs, InP and Si by an optical pump THz probe technique. Optics Communications, 2007, 274(1): 187-197.

[14] A. R. M. Javan, N. Granpayeh. Fast Terahertz wave switch/modulator based on photonic crystal structures. Journal of Electromag- netic Waves and Applications, 2009, 23(1): 203-212.

[15] P. Kŭzel, F. Kadlec and H. Nĕmec. Propagation of Terahertz pulses in photoexcited media: Analytical theory for layered systems. Journal of Chemical Physics, 2007, 127(2): 1-11.

分享
Top