Y2O3的特性及其陶瓷烧结机制研究
Research on the Characteristics and Sintering Mechanisms of Y2O3-Ceramic

作者: 肖水清 :湛江师范学院商学院,广东工业大学机电工程学院; 李毫亮 :广东工业大学机电工程学院;

关键词: Y2O3氧化钇氧化钇陶瓷烧结机制纳米陶瓷Y2O3 Yttrium Oxide Yttrium Oxide Ceramics Sintering Mechanism Nano Ceramic

摘要: 综述了氧化钇的光学、热力学性能及其应用,介绍了纳米陶瓷的烧结方法,其中详细介绍目前常用的氧化钇透明陶瓷的四种烧结方法:真空烧结、热压烧结、热等静压烧结和气氛压力烧结方法的烧结原理。另外,还介绍了氧化钇作为烧结助剂的另一重要作用。

Abstract:

This paper reviewed the optical, thermodynamics properties and application of yttrium oxide, summarized the success sintering methods of nanoceramics, introduced four ways about sintering yttrium oxide ceramics particularly, such as the principles of vacuum sintering (VS), hot pressing sintering (HP), hot isostatic pressing sintering (HIPS) and gas pressing sintering (GPS). In addition, it introduced another important role of Y2O3 which is sintering additive.

文章引用: 肖水清 , 李毫亮 (2012) Y2O3的特性及其陶瓷烧结机制研究。 现代物理, 2, 70-75. doi: 10.12677/MP.2012.23012

参考文献

[1] 黄炳华. 埃米特矩阵和集成网络的稳定性[J]. 固体电子学研究和进展, 1997, 17(3): 235-241.

[2] 黄炳华. 埃米特矩阵的第二形式及其应用[J]. 通信学报, 1999, 2: 53-57.

[3] 黄炳华. 用埃米特式计算复功率[J]. 电路与系统学报, 1999, 4(2): 45-52.

[4] 黄炳华, 卫雅芬, 黄莹. 非线性振荡每一谐波成份的复功率守恒[A]. 第23届电路与系统学术年会论文集[C], 桂林电子科技大学, 2011.

[5] S.-M. Yu, S.-S. Qiu and Q.-H. Lin. New results of study on generating multiple-scroll chaotic attractors. Science in China (Series F), 2003, 46(2): 104-115.

[6] M. P. Kennedy. Chaos in the colpitts oscillator. IEEE Transactions on CAS-1, 1994, 41(11): 771-774.

[7] G. M. Maggio, O. De Feo and M. P. Kennedy. Nonlinear analysis of the colpitts oscillator and applications to design. IEEE Transactions on CAS, 1999, 46(9): 1118-1130.

[8] D. D. Ganji, M. Esmaeilpour and S. Soleimani. Approximate solutions to Van der Pol damped nonlinear oscillators by means of He’s energy balance method. Computer Mathematics, 2010, 87(9): 2014-2023.

[9] Y. M. Chen, J. K. Liu. A new method based on the harmonic balance method for nonlinear oscillators. Physics Letters A, 2007, 368(5): 371-378.

[10] 黄炳华, 黄新民, 张海明. 各类自激振荡的基波分析法[J]. 固体电子学研究和进展, 2005, 25(1): 102-107.

[11] 黄炳华, 黄新民, 王庆华. 用基波平衡原理分析非线性电子网络的稳定性[J]. 固体电子学研究和进展, 2006, 26(1): 43- 48.

[12] 黄炳华, 黄新民, 韦善革. 用基波平衡原理分析非线性振荡与混沌[J]. 通信学报, 2008, 29(1): 65-70.

[13] 黄炳华, 钮利荣, 蔺兰峰. 功率平衡基础上的基波分析法[J]. 电子学报, 2007, 35(10): 1994-1998.

[14] 黄炳华, 陈辰, 韦善革. 基波平衡原理的推广[J]. 固体电子学研究和进展, 2008, 28(1): 57-62.

[15] 黄炳华, 黄新民, 李晖. 基于功率平衡的谐波分析法[A]. 22届电路与系统学术年会论文集[C], 上海复旦大学, 2010.

[16] B.-H. Huang, X.-M. Huang and H. Li. Main components of harmonic solutions. International Conference on Electric Information and Control Engineering, Nanning, 15-17 April 2011: 2307-2310.

[17] B.-H. Huang, X.-M. Huang and H. Li. Main components of harmonic solutions of nonlinear oscillations. Procedia Engineering, 2011, 16: 325-332.

[18] S. M. Yu, W. K. S. Tang, J. Lu, et al. Generating 2n-wing attrac- tors from Lorenz-like systems. International Journal of Circuit Theory and Applications, 2010, 38(3): 243-258.

[19] Mathematica程序(按出现先后排序):①Tab1.nb; ②Leq.nb; ③whwh.nb; ④Tab2.nb; ⑤wh35.nb; ⑥Tab3.nb; ⑦Tab4.nb.

分享
Top