He2分子激发态的势能函数和离解极限研究
Analytical Potential Energy Functions and Dissociation Limits for Excited States of He2 Molecule

作者: 张云光 :西安邮电大学理学院;

关键词: 激发态势能函数光谱常数Excited State Potential Function Spectroscopic Constant

摘要:

利用SAC/SAC-CI(Symmetry Adapted Cluster/Symmetry Adapted Cluster-Configuration Interaction)方法, 选用CC-PVTZCC-PVQZ6-311++g**基组,对He2分子的激发态  的平衡结构进行了优化计算;利用6-311++g**基组,SAC-CI方法计算扫描了He2分子激发态 的势能曲线,并通过拟合Murrel-Sorbie函数得到了这些激发态的势能函数,接着利用力常数与光谱数据的关系计算出这四个激发态的光谱常数 ,结果与实验数据符合的很好;另外我们还从群论出发利用原子与分子反应静力学原理推导了所计算态的离解极限。

The equilibrium geometries of excited states  and  of He2 are calculated using SAC/SAC-CI (Symmetry Adapted Cluster/Symmetry Adapted Cluster-Configuration Interaction) method with the basis sets CC- PVTZ, CC-PVQZ and 6-311++g**. The potential energy curves for the excited states  , ,  and  of He2 molecule are computed by using the basis set 6-311++g**. The analytical potential energy functions of these states are fitted with Murrell-Sorbie function from our calculation results. The spectroscopic constants  and  of these states are calculated through the relationship between spectroscopic data and analytical energy function, which are in well agreement with the experimental data. In addition, the corresponding dissociation limits for all states are derived based on atomic and molecular reaction statics.

文章引用: 张云光 (2012) He2分子激发态的势能函数和离解极限研究。 现代物理, 2, 55-59. doi: 10.12677/MP.2012.23010

参考文献

[1] Y. J. Liu, M. B. Huang, X. G. Zhou, Q. X. Li and S. Q. Yu. Theoretical investigation on the reaction involving resonance enhanced multiphoton ionization process. Journal of Chemical Physics, 2002, 117(14): 6519-6523.

[2] 罗德礼, 蒙大桥, 朱正和. LiH, LiO和LiOH的分析势能函数与分子反应动力学[J]. 物理学报, 2003, 52(10): 2438-2442.

[3] 毛华平, 王红艳, 唐永键, 朱正和, 郑少涛. 电荷对 分子离子的势能函数和能级的影响[J]. 物理学报, 2004, 53(1): 37-41.

[4] 李权, 卢红. 的分子反应动力学[J]. 化学学报, 2003, 61(11): 1881-1884.

[5] 李权, 王红艳, 朱正和. 和 基态分子的结构与势能函数[J]. 化学学报, 2003, 61(12): 1930-1933.

[6] 高涛, 朱正和, 汪小琳, 孙颖, 蒙大桥. 和 的分子结构与分子光谱[J]. 化学学报, 2004, 62(5): 454-460.

[7] R. A. Buckingham, A. Dalgarno. The interaction of normal and metastable helium atoms. Proceedings of the Royal Society A, 1952, 213(1114): 327-349.

[8] S. L. Guberman, W. A. Goddard III. Nature of the excited states of . Physical Review A, 1975, 12(4): 1203-1221.

[9] B. Brutschy, H. Haberland. Long-range helium exci-mer potentials ( and ) from high-resolution differential cross sections for . Physical Review A, 1979, 19(6): 2232-2248.

[10] J. Wasilewski, V. Staemmler and R. Jaquet. CEPA calculations on open-shell molecules. III. Potential curves for the six lowest excited states of He2 in the vicinity of their equilibrium distances. Theorefica Chimica Acta, 1981, 59(5): 517-526.

[11] H. Nakatsuji. J. Leszczynski, Ed. Computation chemis-try: Reviews of current trends. New York: World Scientific, 1997, 2: 62.

[12] 朱正和. 原子分子反应静力学[M]. 北京: 科学出版社, 1996.

[13] A. Mashreghi, M. M. Moshksar. Bond lengths and bond angles of armchair single-walled carbon nanotubes through molecular dynamics and potential energy curve approaches. Computation Materi-als Science, 2010, 49(4): 871-875.

[14] J. Zhao, H. Zeng and Z. H. Zhu. A theoretical study of the accurate analytic potential energy curve and spectroscopic properties for . Computational and Theoretical Chemistry, 2011, 963(1): 130-134.

[15] A. R. Allouche, K. Alioua, M. Bouledroua and M. Aubert-Fre- con. Ab initio potential energy curves and transition dipole moments for the interaction of a ground state He with Na(3s – 3p). Chemical Physics, 2009, 355(1): 85-89.

[16] 谢安东, 施德恒, 朱遵略, 朱正和. 分子 、 和 态的势能函数[J]. 物理化学学报, 2005, 21(6): 658- 662.

[17] 谢安东, 朱正和. 分子 , 和 态的势能函数[J]. 化学学报, 2005, 63(23): 2126-2130.

[18] 朱正和, 余华根. 分子结构与分子势能函数[M]. 北京: 科学出版社, 1997.

[19] C. E. Moore. Atomic energy levels(I). Washington DC: US Government Printing Office, 1971.

[20] K. P. Huber, G. Herzberg. Molecular spectrum and molecular structure. IV. Constants of diatomic moleculestables. Princeton: Van Nostrand, 1979.

分享
Top