利用MFC的视图功能对非线性体系进行仿真模拟
Simulation about the Dynamic of Nonlinear System by Using Visual Function of MFC

作者: 梁立嗣 , 王永丰 , 刘 瑾 , 张季谦 :安徽师范大学物理与电子信息学院;

关键词: 非线性系统MFC模块视图仿真动态演化Nonlinear Systems MFC Module View Simulation Dynamic Evolution

摘要:

目的本文采用VC语言编程,借助MFC(Microsoft Foundation Classes)模块强大的绘图功能,用于仿真模拟心脏等复杂非线性体系的动力学过程。方法首先,利用MFC程序模块整合的视图开发功能,将复杂体系各控制参量设置为面板上不同按钮,通过点击按钮观察复杂体系动力学过程随控制参数变化的情况;其次,通过添加放大或缩小功能按钮,可以方便地观察复杂相图的局部分形细节再者,添加恰当的鼠标响应效果,可以实时观察不同条件下的动态演化效果。结果利用视图仿真重点研究了心脏体系窦房结组织搏动过程,实时观察外界环境刺激对其起搏活动的调控作用,动态跟踪不同参数条件下,膜电压产生及传导的演化过程。通过仿真模拟与实验数据对比,揭示环境扰动与心律失常之间的内在联系及作用机制。结论MFC用于视图仿真,具有方便的可扩展性、直观形象的可视化效果、便利的局部放大功能等优点。模拟过程既直观形象,又方便明了,便于将来构建心脏等复杂系统的三维模型,进一步研究心脏的搏动过程。

Objective: To study the dynamics behavior in some nonlinear system, such as cardiac system et al., by using VC language programming, with the help of the strong drawing function of MFC module. Methods: Firstly, the view function of MFC module is used in this paper, and control parameters of complex system are set to be different buttons in panel of program, thus the evolution course of the complexity dynamics induced by parameters can be obtained easily by clicking a button; Secondly, we could easily observe the complex phase diagram or fractal in detail, by dragging a enlarging/minifying button in panel; Finally, different evolution results under different conditions could be observed in real-time, by adding appropriate mouse response effect. Results: We mainly studied the dynamic process of cardiac sinoatrial node system by using view function of MFC, observing the regulation effects of external stimuli on the pacemaking activity behavior, and dynamic tracking the evolutionary process and conduction of membrane voltage under different parameters. To reveal the inherent relationship and mechanism between environmental disturbance and arrhythmia by comparing the simulation results with experimental data. Conclusion: By using MFC for simulation, it has convenient scalability, intuitionistic visual effects, as well as convenient local amplification function etc. The simulation process could be operated intuitively and conveniently, so it will be useful for building a 3D heart model, and help us further study the dynamics process of cardiac pacemaking in the future.

文章引用: 梁立嗣 , 王永丰 , 刘 瑾 , 张季谦 (2012) 利用MFC的视图功能对非线性体系进行仿真模拟。 现代物理, 2, 30-37. doi: 10.12677/MP.2012.23006

参考文献

[1] 陆同兴. 非线性物理概论[M]. 北京: 中国科学技术大学出版社, 2002.

[2] P. Liu, S. T. Liu. Control and synchronization of Julia sets in coupled map lattice. Communications in Nonlinear Science and Numerical Simulation, 2011, 16(8): 3344-3355.

[3] G. W. Yan, L. Ruan. Lattice Boltzmann solver of Rossler equation. Communications in Nonlinear Science and Numerical Simu- lation, 2000, 5(2): 64-68.

[4] 叶昕, 张茂青, 周纯. 蔡氏电路的仿真研究[J]. 电工电气, 2009, 4: 48-51.

[5] X. W. Liu, T. P. Chen. Boundedness and synchro-nization of y-coupled Lorenz systems with or without controllers. Physica D: Nonlinear Phenomena, 2008, 237(5): 630-639.

[6] 陈春磊, 张季谦, 梁立嗣, 马文洋, 张恒贵. 利用Java 编程对窦房结系搏动过程进行视图仿真[J]. 中国心脏起搏与心电生理杂志, 2012, 2(2): 156-159.

[7] 郭成军, 吕树铮, 陈韵岱等. 应用磁导航技术遥控标测和消融治疗快速性心律失常[J]. 中国心脏起搏与心电生理杂志, 2007, 21(4): 319-323.

[8] H. G. Zhang, Y. Zhao, M. Lei, H. Dobrzynski, J. H. Liu, A. V. Holden and M. R. Boyett. Computational evaluation of the roles of Na+ current, INa, and cell death in cardiac pacemaking and driving. American Journal of Physiology—Heart and Circulatory Physiology, 2007, 292(1): H165-H174.

[9] H. G. Zhang, J. H. Liu and A. V. Holden. Computing the age- related dysfunction of cardiac pacemaker. Computing in Cardi- ology, 2006, 33: 665-668.

[10] T. D. Butters, O. V. Aslanidi, S. Inada, M. R. Boyett, J. C. Hancox, M. Lei and H. G. Zhang. Mechanistic links between Na+ channel (SCN5A) mutations and impaired cardiac pacemaking in sick sinus syndrome. Circulation Research, 2010, 107(1): 126- 137.

[11] M. E. Mangoni, J. Nargeot. Genesis and regulation of the heart automatic-ity. Physiological Reviews, 2008, 88(3): 919-982.

[12] 臧伟进, 陈莉娜, 于晓江. 迷走神经对心室功能的调控机制研究进展[J]. 生物物理学报, 2005, 57(6): 659-672.

[13] H. G. Zhang, A. V. Holden, D. Noble and M. R. Boyett. Analysis of the chronotropic effect of acetyl-choline on sinoatrial node cells. Journal of Cardiovascular Electro-physiology, 2002, 13(5): 465-474.

[14] J. Q. Zhang, A. V. Holden, O. Monfredi, M. R. Boyett and H. G. Zhang. Stochastic vagal modulation of cardiac pacemaking may lead to erroneous identification of cardiac “chaos”. Chaos, 2009, 19(2): Article ID: 028509.

[15] S. S. Demir, J. W. Clark and W. R. Giles. Parasympathetic modulation of sinoatrial node pacemaker activity in rabbit heart: A unifying model. American Journal of Physiology—Heart and Circulatory Physiology, 1999, 276: 2221-2244.

[16] 宿燕岗, 王蔚, 柏瑾, 葛均波. 磁悬浮列车对心脏起搏系统的影响[J]. 中国心脏起搏与心电生理杂志, 2010, 24(1): 16-19.

[17] M. Miller, V. Beach, C. Mangano and R. A. Vogel. Positive emotions and the endothelium: Does joyful music improve vascular health? Circulation, 2008, 118: S_1148.

[18] 王军, 唐丽萍, 钱斐鸿等. 窦性心率震荡检测方法学重复性和稳定性研究[J]. 中国心脏起搏与心电生理杂志, 2010, 24(4): 333.

[19] W. Hua, et al. Incidence of sudden cardiac death in China: Analy- sis of regional populations. Ameri-can College of Cardiology Foun- dation, 2009, 54(12): 1110-1118.

[20] C. H. Luo, Y. Rudy. A dynamic model of the cardiac ventricular action potential. I. Simulations of ionic currents and con-centra- tion changes. Circulation Research, 1994, 74(6): 1071-1096.

[21] D. Noble, A. Varghese, P. Kohl, et al. Improved guinea-pig ventricular cell model incorporating a diadic space, Ikr and Iks, and length and tension dependent processes. Canadian Journal of Cardiology, 1998, 14(1): 123-134.

[22] E. Colleen, P. Clancy and Y. Rudy. Linking a genetic defect to its cellular phenotype in a cardiac arrhythmia. Nature, 1999, 400(6744): 566-569.

分享
Top