Projection of Future Precipitation in the Lhasa River Basin

作者: 刘文丰 , 徐宗学 * , 李发鹏 :北京师范大学水科学研究院;

关键词: 降水情景降尺度拉萨河Precipitation Scenarios Downscaling Lhasa River

摘要: 拉萨河流域是西藏地区政治、经济、文化中心,在全球气候变暖影响下,流域气候变化显著,针对拉萨河流域开展气候变化研究具有重要意义。本文基于气象站点实测数据和ERA-40MIROC3.2_medres大尺度网格数据,采用统计降尺度模型Automated Statistical Downscaling(ASD),对拉萨河流域日降水量进行降尺度研究,在此基础上分析了流域2046~2065年与2081~2100年降水量变化情景。结果显示:ASD模型能够较好地模拟流域降水基本特征,各站点的解释方差(R2)达到13%~22%,率定期与验证期的均方根误差(RMSE)分别控制在0.250.53以内。未来两个时期流域降水格局变化显著,年降水量将减少10.55%~17.25%。降水年内分配变得更加集中,夏季降水呈显著增加趋势,变化幅度为19.03%~59.02%;春、秋、冬季降水呈显著减少趋势,减小幅度为18.43%~40.93%

Abstract: Under the impact of global warming, the Lhasa River Basin (LRB), located at the political, economic, and cultural center of Tibetan region, is experiencing significant climate change. It is important to undertake the climate studies over LRB. On the basis of observed precipitation at meteorological stations, ERA-40 reanalysis and MIROC3.2_medres data, statistical downscaling model—Automated Statistical Downscaling (ASD) was employed to simulate historical daily precipitation. Future precipitation scenarios for the periods of 2046 - 2065 and 2081 - 2100 were generated by using ASD model. Results show that ASD model can simulate the basic features of precipitation well, with the explanation variance (R2) of each station reaching 13% - 22%. Root mean square errors (RSME) during calibration and validation periods are around 0.25 and 0.53, respectively. Precipitation regime will change significantly in the future. Total amount of annual precipitation will decrease by 10.55% - 17.25%. Future precipitation will become more concentrated. In summer, precipitation will increase evidently, and the amplitude of change is 19.03% - 59.02%, while precipitation in spring, autumn and winter will experience obvious decreasing, with the ratio of 18.43% - 40.93%.

文章引用: 刘文丰 , 徐宗学 , 李发鹏 (2012) 拉萨河流域未来降水情景预估。 水资源研究, 1, 267-273. doi: 10.12677/JWRR.2012.14039


[1] 关志华, 陈传友, 区裕雄, 等. 西藏河流与湖泊[M]. 北京: 科学出版社, 1984. GUAN Zhihua, CHEN Chuanyou, QU Yuxiong, et al. Rivers and lakes in Tibet. Beijing: Science and Technology Press, 1984. (in Chinese)

[2] 宋敏红, 马耀明, 张宇, 等. 雅鲁藏布江流域气温变化特征及趋势分析[J]. 气候与环境研究, 2011, 16(6): 760-766. SONG Minkong, MA Yaomimg, ZHANG Yu, et al. Analyses of characteristics and trend of air temperature variation along the Brahmaputra Valley. Climatic and Environmental Research, 2011, 16(6): 760-766. (in Chinese)

[3] 洛珠尼玛, 王建群, 徐幸仪. 拉萨河流域水循环要素演变趋势分析[J]. 水资源保护, 2012, 28(1): 51-54. LUOZHU, N. M., WANG Jianqun and XU Xingyi. Variation trend of water cycle factors in Lhasa River Basin. Water Resources Protection, 2012, 28(1): 51-54. (in Chinese)

[4] 蔺学东, 张镱锂, 姚治君, 等. 拉萨河流域近50 年来径流变化趋势分析[J]. 地理科学进展, 2007, 26(3): 58-68. LIN Xuedong, ZHANG Yili, YAO Zhijun, et al. Trend analysis of the runoff variation in Lhasa River Basin in Tibetan Plateau during the last 50 years. Progress in Geography, 2007, 26(30): 56-68. (in Chinese)

[5] 张圣微, 雷玉平, 姚琴, 等. 土地覆被和气候变化对拉萨河流域径流量的影响[J]. 水资源保护, 2010, 26(2): 39-44. ZHANG Shengwei, LEI Yuping, YAO Qin, et al. Runoff response to land cover and climate change in Lhasa River Basin. Water Resources Protection, 2010, 26(2): 39-44. (in Chinese)

[6] 吕勇平, 穆晓涛. 拉萨河流域的气候特征[J]. 气象, 1986, 7: 24-25. LV Yongping, MU Xiaotap. Meteorological characteristics in the Lhasa River Basin. Meteorological Monthly, 1986, 7: 24-25. (in Chinese)

[7] 王建林. 雅鲁藏布江及其支流中部流域地区水文特性分析[J]. 水土保持通报, 1994, 14(2): 54-58. WANG Jianlin. Analyse of hydrological characteristics of central section ralley area of Yalu Zangbu River and the tributary of Lasa River and Nianchu River. Bulletin of Soil and Water Conservation, 994, 14(2): 54-58. (in Chinese)

[8] 孙颖, 丁一汇. IPCC AR4气候模式对东亚夏季风年代际变化的模拟性能评估[J]. 气象学报, 2008, 66(5): 765-780. SUN Yi, DING Yihui. Validation of IPCC AR4 climate models in simulating interdecadal change of East Asian summer mon- soon. Acta Meteorologica Sinica, 2008, 66(5): 765-780. (in Chinese)

[9] ZHOU, T. J., YU, R. C. 20th century surface air temperature over China and the globe simulated by coupled climate models. Journal of Climate, 2006, 19(22): 5843-5858.

[10] LIU, Z. F., XU, Z. X., YAO, Z. J., et al. Comparison of surface variables from ERA and NCEP reanalysis with station data over eastern China. Theoretical and Applied Climatology, 2012, 107 (3-4): 611-621.

[11] 赵天保, 符淙斌, 柯宗建, 等. 全球大气再分析资料的研究现状与进展[J]. 地球科学进展, 2010, 25(3): 242-254. ZHAO Tianbao, FU Congbin, KE Zongjian, et al. Global at-mosphere reanalysis datasets: Current status and recent advances. Advances in Earth Science, 2010, 25(3): 242-254. (in Chinese)

[12] 黄刚. NCEP/NCAR和ERA-40再分析资料以及探空观测资料分析中国北方地区年代际气候变化[J]. 气候与环境研究, 2006, 11(3): 310-320. HUANG Gang. The assessment and difference of the interdecadal variations of climate change in Northern Part of China with the NCEP/NCARand ERA240 reanalysis data. Climatic and Environmental Research, 2006, 11(3): 310-320. (in Chinese)

[13] 李建, 宇如聪, 陈昊明, 等. 对三套再分析资料中国大陆地区夏季降水量的评估分析[J]. 气象, 2010, 36(12): 1-9. LI Jian, YU Rucong, CHEN Haoming, et al. Evaluation and analyses of summer rainfall over Mainland China in three rea-nalysis datasets. Meteorological Monthly, 2010, 36(12): 1-9. (in Chinese)

[14] WILBY, R. L., WIGLEY, T. M. L., CONWAY, D., et al. Statistical downscaling of general circulation model output: A compar- ison of methods. Water Resources Research, 1998, 34(11): 2995- 3008.

[15] WILBY, R. L., DAWSON, C. W. and BARROW, E. M. SDSM: A decision support tool for the assessment of regional climate change impacts. Environmental Modelling & Software, 2000, 17(2): 147-159.

[16] HESSAMI, M., GACHON, P., OUARDA, T. B., et al. Automated regression-based statistical downscaling tool. Environmental Modelling & Software, 2008, 23(6): 813-834.

[17] LIN, X. D., ZHANG, Y. L., YAO, Z. J., et al. The trend on runoff variations in the Lhasa River Basin. Journal of Geographical Sciences, 2008, 18(1): 95-106.

[18] NING, A. F., LIU, T. C., YIN, G., et al. Study on the water environment and composition of Lhasa River. Science in China, Series E: Technological Sciences, 2001, 44(Suppl): 96-100.