基于WetSpass模型的北京平原区降水入渗量估算
Estimation of Rainfall Infiltration in Beijing Plain Using WetSpass

作者: 潘 云 :城市环境过程与数字模拟国家重点实验室培育基地; 朱 琳 , 杜鹭飞 , 许海丽 , 刘 畅 :城市环境过程与数字模拟国家重点实验室培育基地,首都师范大学资源环境与旅游学院;

关键词: WetSpass模型地下水位动态法北京平原区降水入渗量WetSpass Model WLF Method Beijing Plain Rainfall Infiltration

摘要: 本文采用WetSpass模型,估算2007年北京平原区降水入渗量。结果显示,2007年北京平原区降水入渗量为0~263.05 mm,空间上呈现出东北、西南较高,西北东南一带较低的趋势。结合GIS空间统计分析功能,高值分布在研究区东北一带,此处土壤质地为壤砂土,透水性较好,土地利用类型为河湖滩地;低值呈零星状分布在研究区中部至东南一带。整体来看,区内平均补给量为65.43 mm,仅占全年降水量的12.23%。本文结合2007年研究区潜水监测井实测数据,利用地下水位动态法对模型估算结果进行验证,结果显示两组数据具有较好的线性关系,R2 = 0.963,说明WetSpass模型在本研究区有较好的适用性。

Abstract: This paper used WetSpass to estimate the rainfall infiltration in Beijing plain in 2007. Result shows that the range of infiltration is from 0 mmto263.05 mm, and the average annual infiltration is65.43 mm, which is 12.23% of the precipitation. Infiltration in the northeast and southwest of the study area are generally higher than the values in northwest, middle region and southeast. The maximum value of infiltration comes from the northeast ofBeijingplain. The minimum value comes from the middle region and southeast. The water table fluctuation (WTF) method is used to evaluate the WetSpass simulation. Two sets data of infiltration by using different methods have the obvious correlation with R2 = 0.963.

文章引用: 潘 云 , 朱 琳 , 杜鹭飞 , 许海丽 , 刘 畅 (2012) 基于WetSpass模型的北京平原区降水入渗量估算。 水资源研究, 1, 245-250. doi: 10.12677/JWRR.2012.14035

参考文献

[1] 北京市水务局. 2009北京市水资源公报[R], 2009: 1. Beijing Water Authority. Beijing water resources bulletin 2009, 2009: 1. (in Chinese)

[2] 北京市地质矿产勘查开发局, 北京市水文地质工程地质大队. 北京地下水[M]. 北京: 中国大地出版社, 2008: 116. Beijing Geology Prospecting & Developing Bureau, Beijing Insti- tute of Hydrogeology and Engineering Geology. Beijing ground- water. Beijing: China Land Press, 2008: 116. (in Chinese)

[3] 王言思. 内蒙孪井灌区地下水补给的研究[D]. 中国海洋大学, 2009. WANG Yansi. Research on groundwater recharge in Luanjing irrigation area, Inner Mongolia. Ocean University of China, 2009. (in Chinese)

[4] STOTHOFF, S. A. Sensitivity of long-term bare soil infiltration simulations to hydraulic properties in an arid environment. Water Resources Research, 1997, 33: 547-558.

[5] ROCKHOLD, M. L., FAYER, M. J., KINCAID, C. T., et al. Estimation of natural ground water recharge for the perfor-mance assessment of a low-level waste disposal facility at the Hanford site. Publication PNL-10508. Hanford: Battelle Pacific Northwest Laboratory, 1995.

[6] KEARNS, A. K., HENDRICKX, J. M. H. Temporal variability of diffuse groundwater recharge in New Mexico. New Mexico Water Resources Research Institute, 1998, 309: 43.

[7] LIU, Y. B., GEBREMESKEL, S. and SMEDT, F. D. Flood prediction with the WetSpa model on catchment scale. Flood Defence, 2002: 499-507.

[8] RWETABULA, J., DE SMEDT, F. and REBHUN, F. Prediction of runoff and discharge in the Simiyu River (tributary of Lake Victoria, Tanzania) using the WetSpa model. Hydrology and Earth System Discussions, 2007, 4(2): 881-908.

[9] 林岚. 环境变化条件下松嫩盆地降水入渗补给量变化研究[D]. 吉林大学, 2008. LIN Lan. Study on changes of rainfall infiltration recharge under conditions of variable environment in Songnen Basin. Jilin Uni- versity, 2008. (in Chinese)

[10] PAN Yun, GONG Huili, ZHOU Demin, et al. Impact of land use change on groundwater recharge in Guishui River Basin, China. China Geographical Science, 2011, 21(6): 734-743.

[11] BATELAAN, O., WOLDEAMLAK, S. T. ArcView interface for WetSpass users’ guide. Vrije Universiteit Brussel Department of Hydrology and Hydraulic Engineering, 2007.

分享
Top