基于BP神经网络的洞庭湖水位变化的预测
Prediction of the Water Level Fluctuation of Dongting Lake Based on BP Neural Network

作者: 袁玉洁 * , 黄 璐 * , 余 勋 * , 彭也茹 * , 曾光明 :湖南大学环境科学与工程学院; 梁 婕 :湖南大学环境生物与控制教育部重点实验室;

关键词: 三峡工程洞庭湖出库流量水位BP神经网络Three Gorges Reservoir Dongting Lake Outflow Discharge Water Level BP Neural Network

摘要: 研究三峡水库运行后洞庭湖水位的变化情况,对洞庭湖湿地修复具有重要意义。本文利用三峡出库流量和对应时间段的城陵矶水位数据作为训练样本,基于Levenberg-Marquardt优化算法建立一个模拟精度较高的四层BP神经网络。并运用该网络对201010月份城陵矶水位进行了预测,结果表明:实测值的变化趋势与预测值的变化趋势基本一致,最大误差为3.89%,平均误差为0.91%,所建立的四层BP神经网络的能有效地应用于洞庭湖水位的预测及变化趋势的预报系统中。

Abstract: It is of vital significance to study the water level fluctuation of DongtingLakeespecially after the operation of the Three Gorges Reservoir (TGR), which may provide useful data and necessary information for the repairing works of the wetland. In this study, the historical time series of outflow discharge of the TGR and water level of Chenglingji were taken as training samples. Based on Levenberg-Marquardt (LM) algorithm, a BP neural network with four layers was established, which well-expressed the unknown but literally existed relationship between outflow discharge of the TGR and the water level of Chenglingji. Then it was applied to the water level prediction in October 2010 of Chenglingji. It is indicated that the trend of actual value and forecast value are in substantial agreement and the maximum and average errors are 3.89% and 0.91%, respectively. It is shown that BP neural network has fairly good simulation accuracy and can be satisfactorily utilized to predict the water level fluctuation of theDongtingLake.

文章引用: 袁玉洁 , 梁 婕 , 黄 璐 , 余 勋 , 彭也茹 , 曾光明 (2012) 基于BP神经网络的洞庭湖水位变化的预测。 水资源研究, 1, 222-226. doi: 10.12677/JWRR.2012.14031

参考文献

[1] 袁正科. 洞庭湖湿地资源与环境[M]. 长沙: 湖南师范大学出版社, 2008. YUAN Zhengke. Resources and environment of Dongting Lake wetland. Changsha: Hunan Normal University Press, 2008. (in Chi- nese)

[2] 黄群, 孙占东, 姜加虎. 三峡水库运行对洞庭湖水位影响分析[J]. 湖泊科学, 2011, 23(3): 424-428. HUANG Qun, SUN Zhandong and JIANG Jiahu. Impacts of the operation of the Three Gorges Reservoir on the lake water level of Lake Dongting. Journal of Lake Sciences, 2011, 23(3): 424- 428. (in Chinese)

[3] 闵要武, 段唯鑫, 陈力. 三峡水库调洪运用对寸滩站水位流量关系影响[J]. 人民长江, 2011, 42(3): 17-19. MIN Yaowu, DUAN Weixin and CHEN Li. Influence of flood regulation of TGP on water level-flow relation in Cuitan Station. Yangtze River, 2011, 42(3): 17-19. (in Chinese)

[4] 李梅, 张洪波, 黄强, 等. 最小二乘混沌算法在水位流量关系拟合中的应用[J]. 西安理工大学学报, 2006, 22(3): 283-285. LI Mei, ZHANG Hongbo, HUANG Qiang, et al. The application of least squares chaos algorithm for stage-discharge relation curve fitting. Journal of Xi’an University of Technology, 2006, 22(3): 283-285. (in Chinese)

[5] 康玲, 万葳, 姜铁兵. 基于小波分析的水位流量曲线求解方法[J]. 华中科技大学学报(自然科学版), 2003, 31(10): 30-31. KANG Ling, WAN Wei and JIANG Tiebing. A wavelet-based method for rating level-discharge curve. Journal of Huazhong University of Science & Technology (Nature Science Edition), 2003, 31(10): 30-31. (in Chinese)

[6] 詹士昌, 徐婕. 蚁群算法在水位流量关系拟合中的应用[J]. 杭州师范学院学报(自然科学版), 2005, 4(2): 109-113. ZHAN Shichang, XU Jie. The application of ant colony algorithm for stage-discharge curve calibration. Journal of Hangzhou Teachers College (Natural Science Edition), 2005, 4(2): 109-113. (in Chinese)

[7] 刘政, 邹长武, 赵吉武, 等. BP神经网络模型拟合受回水影响的水位流量关系研究[J]. 水文, 2008, 28(6): 28-29. LIU Zheng, ZOU Changwu, ZHAO Jiwu, et al. A new method to simulate stage-discharge relation affected backwater. Journal of China Hydrology, 2008, 28(6): 28-29. (in Chinese)

[8] 王晓萍, 孙继洋, 金鑫. 基于BP神经网络的钱塘江水质指标的预测[J]. 浙江大学学报(工学版), 2007, 41(2): 361-364. WANG Xiaoping, SUN Jiyang and JIN Xin. Prediction of water quality index in Qiantang River based on BP neural network model. JournaI of Zhejiang University (Engineering Science), 2007, 41(2): 361-364. (in Chinese)

[9] XU, M., ZENG, G. M., XU, X. Y., et al. Application of Bayesian regularized BP neural network model for analysis of aquatic ecological data—A case study of chlorophyll—A prediction in Nanzui water area of Dongting Lake. Journal of Environmental Sciences, 2005, 17(6): 946-952.

[10] 朱星明, 卢长娜, 王如云, 等. 基于人工神经网络的洪水水位预报模型[J]. 水利学报, 2005, 36(7): 806-811. ZHU Xingming, LU Changna, WANG Ruyun, et al. Artificial neural network model for flood water level forecasting. Journal of Hydraulic Engineering, 2005, 36(7): 806-811. (in Chinese)

分享
Top