一类迭代泛函微分方程的光滑解
Smooth Solutions of an Iterative Functional Differential Equation

作者: 赵侯宇 :重庆师范大学数学学院;

关键词: 迭代泛函微分方程光滑解Faà di Bruno公式不动点定理Iterative Functional Differential Equation Smooth Solutions Faà di Bruno’s Formula Fixed Point Theorem

摘要: 本文利用Faà di Bruno公式及Schauder不动点定理,证明了一类迭代泛函微分方程 的光滑解的存在性和唯一性。

Abstract: By Faà di Bruno’s formula, using Schauder fixed point theorem, we study the existence and uniqueness of smooth solutions of an iterative functional differential equation  .

文章引用: 赵侯宇 (2012) 一类迭代泛函微分方程的光滑解。 理论数学, 2, 138-143. doi: 10.12677/PM.2012.23022

参考文献

[1] J. Hale. Theory of functional differential equations. New York: Springer Verlag, 1977.

[2] E. Eder. The functional differential equations. Journal of Differential Equations, 1984, 54(3): 390-400.

[3] E. Feckan. On certain type of functional differential equations. Mathematica Slovaca, 1993, 43(1): 39-43.

[4] K. Wang. On the equation. Funkcialaj Ekvacioc, 1990, 33: 405-425.

[5] M. I. Skolink. Radar handbook. New York: McGraw-Hill, 1990: 234-238.

[6] S. Stanek. On global properties of solutions of functional differential equation. Dynamic Systems & Applications, 1995, 4: 263-278.

[7] J. G. Si, W. R. Li and S. S. Cheng. Analytic solutions of an iterative functional differential equation. Computers & Mathematics with Applications, 1997, 33(6): 47-51.

[8] J. G. Si, W. N. Zhang. Analytic solutions of a class of iterative functional differential equation. Journal of Computational and Applied Mathematics, 2004, 162(2): 467-481.

[9] J. G. Si, S. S. Cheng. Smooth solutions of a nonhomogeneous iterative functional differential equation. Proceedings of the Royal Society of Edinburgh, 1998, 128(A): 821-831.

[10] J. G. Si, X. P. Wang. Smooth solutions of a nonhomogeneous iterative functional differential equation with variable coefficients. Journal of Mathematical Analysis and Applications, 1998, 226(2): 377-392.

分享
Top