一个三项共轭梯度算法及其收敛性
A Three- Terms Conjugate Gradient Algorithm and Its Convergence

作者: 陈海 :广西大学数学与信息科学学院,南宁;

关键词: 共轭梯度充分下降收敛性Conjugate Gradient Sufficient Descent Property Convergence.

摘要: 本文给出一个三项共轭梯度算法,搜索方向在不需要任何线搜索的条件下,拥有充分下降性条件,在此方向的定义中,不但拥有梯度值信息还拥有函数值信息,证明了全局收敛性并给出数值检验结果。

Abstract: In this paper, a three- terms conjugate gradient method is proposed .The search direction possesses the sufficient descent property without any line search. Moreover, the search direction has not only the gradient value but also function value. The global convergence will be established and the numerical results are reported.

文章引用: 陈海 (2011) 一个三项共轭梯度算法及其收敛性。 理论数学, 1, 41-45. doi: 10.12677/pm.2011.11009

参考文献

[1] Y. H. Dai, Y. Yuan. A nonlinear conjugate gradient method with a strong global convergence property. SIAM Journal on Optimization, 2000, 10(177): 177-182.

[2] R. Fletcher. Practical Method of Optimization. New York: Wiley, 1997.

[3] R. Fletcher, C. Reeves. Function minimization by conjugate gradients. HHHComputer JournalHHH, 1964, 7(2): 149-154.

[4] M. R. Hestenes, E. Stiefel. Method of conjugate gradient for solving linear equations. Res. Nat. Bur. Stand., 1952, 49(6): 409-436.

[5] Y. Liu, C. Storey. Efficient generalized conjugate gradient algorithms, part 1: theory. Journal of optimization theory and Application, 1992, 69(1):129-137.

[6] E. Polak, G. Ribiere. Note sur la xonvergence de directions conjugees. Rev. Francaise informat Recherche Operatinelle 3e Annee, 1969, 16: 35-43.

[7] B. T. Polyak. The conjugate gradient method in extreme problems. USSR Comp Math Math Phys., 1969, 9(4): 94-112.

[8] W. W. Hager, H. Zhang. A new conjugate gradient method with guaranteed descent and an efficient line search. SIAM Journal on Optimization, 2005, 16(1): 170-192.

[9] W. W. Hager, H. Zhang. Algorithm 851: CGDESENT, A conjugate gradient method with guaranteed descent. ACM Transactions on Mathematical Software, 2006, 32(1): 113-137.

[10] G. Li, C. Tang, Z. Wei. New conjugacy condition and related new conjugate gradient methods for unconstrained optimization problems. Journal of Computational and Applied Mathemathics, 2007, 202(2): 532-539.

[11] Z. Wei, G. Li, L. Qi. New nonlinear conjugate gradient formulas for large-scale unconstrained optimization problems. Applied Mathematics and Computation, 2006, 179(2): 407-430.

[12] Z. Wei, G. Li, L. Qi. Global convergence of the PRP conjugate gradient methods with inexact line search for nonconvex unconstrained optimization problems. Mathematics of Computation, 2008, 77(264): 2173-2193.

[13] Z. Wei, S. Yao, L. Lin. The convergence properties of some new conjugate gradient methods. Applied Mathematics and Computation, 2006, 183(2): 1341-1350.

[14] G. L. Yuan. Modified nonlinear conjugate gradient methods with sufficient descent property for large-scale optimization problems. Optimization Letters, 2009, 3(1): 11-21.

[15] G. L. Yuan, X. W. Lu. A modified PRP conjugate gradient method. Annals of Operations Research, 2009, 166(1): 73-90.

[16] L. Zhang, W. Zhou, D. Li. A descent modified Po-lak-Ribiere- Polyak conjugate method and its global convergence. IMA Journal on Numerical Analysis, 2006, 26(4): 629-649.

[17] J. Z. Zhang, N. Y. Deng, L. H. Chen. New quasi-Newton equation and related methods for unconstrained optimization. Journal of Optimization Theory and Application, 1999, 102(1): 147-167.

[18] G. Yuan, Z. Wei. Convergence analysis of a modified BFGS method on convex minimizations. Computational Optimization and Applications, 2010, 47(2): 237-255.

分享
Top