药用植物类异戊二烯代谢途径及其活性产物合成调控研究进展
Recent Research on Isoprenoid Biosynthetic Pathway and Metabolic Regulation of Functional Isoprenoids in Medicinal Plants

作者: 王秋军 , 张犇 , 王剑文 :苏州大学药学院,苏州;

关键词: 类异戊二烯化合物生物合成甲羟戊酸途径2C-甲基4-磷酸-4D-赤藓糖醇途径Isoprenoids Biosynthesis Mevalonate (MVA) Pathway -2-C-Methyl-D-Erythritol-4-Phosphate Pathway (MEP)

摘要: 植物类异戊二烯化合物是一类具有多种药理活性的天然产物,其生物合成主要通过甲羟戊酸途径与2C-甲基-4-磷酸-4D-赤藓糖醇途径,对这两条途径的调控研究已成为近年来热点之一。本文就近年来植物类异戊二烯代谢途径的研究进展以及相关活性成分的生物合成调控研究做一综述。

Abstract: Isoprenoids originally from medicinal plants are natural products of diverse bioactivities. Isopre-noids were synthesized in plants via the mevalonate (MVA) pathway and the 2-C-methyl-D-erythritol-4- phosphate (MEP) pathway whose regulation mechanisms are research hotspots in recent years. This article gives a summary of recent explorations on isoprenoid biosynthetic pathway and metabolic regulation of func-tional isoprenoids in medicinal plants.

文章引用: 王秋军 , 张犇 , 王剑文 (2012) 药用植物类异戊二烯代谢途径及其活性产物合成调控研究进展。 植物学研究, 1, 23-29. doi: 10.12677/BR.2012.12004

参考文献

[1] B. Lange, T. Rujan, W. Martin, et al. Isoprenoid biosynthesis: The evolution of two ancient and distinct pathways across ge- nomes. Proceedings of the National Academy of Sciences of USA, 2000, 97: 13172-13177.

[2] 陈旭微, 杨玲, 章艺. 类脂对植物生长和发育的作用[J]. 植物生理学通讯, 2004, 40(3): 373-378.

[3] 王文杰, 贺海升, 关宇等. 丙酮和二甲基亚砜法测定植物叶绿素和类胡萝卜素的方法学比较[J]. 植物研究, 2009, 2: 224- 229.

[4] P. Davies. 植物激素: 合成、信号转导和作用[M]. 中国农业大学出版社, 2008: 3-14.

[5] H. Woerdenbag, J. Lüers, W. van Uden, et al. Production of the new antimalarial drug artemisinin in shoot cultures of Artemisia annua L. Plant Cell, Tissue and Organ Culture, 1993, 32: 247- 257.

[6] M. Wildung, R. Croteau. A cDNA clone for taxadiene synthase, the diterpene cyclase that catalyzes the committed step of taxol biosynthesis. The Journal of Biological Chemistry, 1996, 271: 9201-9204.

[7] M. Rohmer, M. Knani, P. Simonin, et al. Isoprenoid biosynthesis in bacteria: A novel pathway for the early steps leading to iso- pentenyl diphosphate. Biochemical Journal, 1993, 295: 517- 524.

[8] D. Banthorpe, B. Charlwood and M. Francis. Biosynthesis of monoterpenes. Chemical Reviews, 1972, 72: 115-155.

[9] T. Bach. Some new aspects of isoprenoid biosynthesis in plants: A review. Lipids, 1995, 30: 191-202.

[10] M. Sapir-Mir, A. Mett, E. Belausov, et al. Peroxisomal localization of Arabidopsis isopentenyl diphosphate isomerases suggests that part of the plant isoprenoid mevalonic acid pathway is com- partmentalized to peroxisomes. Plant Physiology, 2008, 148(3): 1219-1228.

[11] M. Rohmer. The discovery of a mevalonate-independent path- way for isoprenoid biosynthesis in bacteria, algae and higher plants. Natural Product Reports, 1999, 16: 565-574.

[12] J. Schwender, C. Gemünden and H. Lichtenthaler. Chlorophyta exclusively use the 1-deoxyxululose 5-phosphate/2-C-methyl- erythritol-4-phosphate pathway for the biosynthesis of isopre- noids. Planta, 2001, 212: 416-423.

[13] T. Bach, A. Boronat, C. Caelles, et al. Aspects related to mevalonate biosynthesis in plants. Lipids, 1991, 26: 637-648.

[14] J. McGarvey, R. Croteau. Terpenoid metabolism. The Plant Cell, 1995, 7: 1015-1026.

[15] A. Lopes, D. Baldoqui, S. López, et al. Biosynthetic origins of the isoprene units of gaudichaudianic acid in Piper gaudichau- dianum (Piperaceae). Phytochemistry, 2007, 68: 2053-2058.

[16] D. Choi, B. Ward and R. Bostock. Differential induction and suppression of potato 3-hydroxy-3-methylglutaryl coenzyme A reductase genes in response to Phytophthora infestans and to its elicitor arechidonic acid. Plant Cell, 1992, 4: 1333-1344.

[17] M. Rohmer, M. Knani, P. Simonin, et al. Isoprenoid biosynthesis in bacteria: A novel pathway for the early steps leading to iso- pentenyl diphosphate. Biochemical Journal, 1993, 295(2): 517- 524.

[18] Z. Liao, M. Chen, Y. Gong, et al. Isoprenoid biosynthesis in plants: Pathway, genes, regulation and metabolic engineering. Journal of Bio-Sciences, 2006, 6: 209-219.

[19] W. Eisenreicha, A. Bachera, D. Arigonib, et al. Biosynthesis of isoprenoids via the non-mevalonate pathway. Cellular and Molecular Life Sciences, 2004, 61: 1401-1426.

[20] S. Takahashi, T. Kuzuyama, H. Watanabe, et al. 1-deoxy-D- xylulose-5-phosphate reductoisomerase catalyzing the formation of 2-C-methyl-D-erythritol-4-phosphate in an alternative nonme- valonate pathway for terpenoid biosynthesis. Proceedings of the National Academy of Sciences of USA, 1998, 95: 9879-9884.

[21] 金蓉, 朱长青, 徐昌杰. 1-脱氧木酮糖-5-磷酸合成酶(DXS)及其编码基因[J]. 细胞生物学杂志, 2007, 29(5): 706-712.

[22] 兰文智, 余龙江, 蔡永君等. 类异戊二烯非甲羟戊酸代谢途径的分子生物学研究进展[J]. 西北植物学报, 2001, 21(5): 1039-1047.

[23] 罗永明, 刘爱华, 李琴等. 植物萜类化合物的生物合成途径及其关键酶的研究进展[J]. 江西中医学院学报, 2003, 15(1): 45-51.

[24] D. McCaskill, R. Croteau. Monoterpene and sesquiterpene bio- synthesis in glandular trichomes of peppermint (Mentha x pi- perita) rely exclusively on plastid-derived isopentenyl diphos- phate. Planta, 2004, 197(1): 49-56.

[25] K. Adam, J. Zapp. Biosynthesis of the isoprene units of chamomile sesquiterpenes. Phytochemistry, 1998, 48(6): 953-959.

[26] M. Towler, P. Weathers. Evidence of artemisinin production from IPP stemming from both the mevalonate and the nonmeva- lonate pathways. Plant Cell Reports, 2007, 26: 2129-2136.

[27] N. Schramek, H. Wang, W. Römisch-Margl, et al. Artemisinin biosynthesis in growing plants of Artemisia annua A (13)CO(2) study. Phytochemistry, 2010, 71: 179-187.

[28] O. Laule, A. Furholz, H. Chang, et al. Crosstalk between cytosolic and plastidial pathways of isopreneoid biosynthesis in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of USA, 2003, 100(11): 6866-6871.

[29] J. Bick, B. Lange. Metabolic crosstalk between cytosolic and plastidial pathways of isopreneoid biosynthesis: Unidirectional transports of intermediates across the chloroplast envelope mem- brane. Archives of Biochemistry and Biophysics, 2003, 415(2): 146-154.

[30] M. Gutierrez-Nava, C. Gillmor, L. Jimenez, et al. Chloroplast biogenesis genes act cell and noncell autonomously in early chloroplast development. Plant Physiology, 2004, 135: 471-482.

[31] M. Rodrıguez-Concepcion, O. Fores, J. Martınez-Garcıa, et al. Distinct light-mediated pathways regulate the biosynthesis and exchange of isoprenoid precursors during Arabidopsis seedling development. Plant Cell, 2004, 16: 144-156.

[32] L. Carretero-Paulet, A. Cairo, P. Botella-Pavia, et al. Enhanced flux through the methylerythritol 4-phosphate pathway in Ara- bidopsis plants overexpressing deoxyxylulose 5-phosphate re- ductoisomerase. Plant Molecular Biology, 2006, 62: 683-695.

[33] S. Sauret-Gueto, P. Botella-Pavia, U. Flores-Perez, et al. Plastid cues posttranscriptionally regulate the accumulation of key en- zymes of the methylerythritol phosphate pathway in Arabidopsis. Plant Physiology, 2006, 141: 75-84.

[34] U. Flores-Perez, S. Sauret-Gueto, E. Gas, et al. A mutant impaired in the production of plastome-encoded proteins uncovers a mechanism for the homeostasis of isoprenoid biosynthetic en- zymes in arabidopsis plastids. Plant Cell, 2008, 20: 1303-1315.

[35] J. Bohlmann, D. Martin, N. Oldham, et a1.Terpenoid secondary metabolism in Arabidopsis thaliana: cDNA cloning, characteri- zation and functional expression of a myrcene/(E)-13-ocimene synthase. Archives of Biochemistry and Biophysics, 2000, 375(2): 261-269.

[36] 徐应文, 吕季娟, 吴卫等. 植物单萜合酶研究进展[J]. 生态学报, 2009, 29(6): 3188-3197.

[37] H. Yao, Y. Gong, K. Zuo, et al. Molecular cloning, expression profiling and functional analysis of a DXR gene encoding 1- deoxy-D-xylulose-5-phosphate reductoisomerase from cam pto- theca acuminate. Journal of Plant Physiology, 2008, 165(2): 203- 213.

[38] L. Carretero-Paulet, I. Ahumada, N. Cunillera, et al. Expression and molecular analysis of the Arabidopsis DXR gene encoding 1-deoxy-D-xylulose-5-phosphate reductoisomerase, the first com- mitted enzyme of the 2-C-methyl-D-erythritol-4-phosphate path- way. Plant Physiology, 2002, 129(3): 1581-1591.

[39] J. Hans, B. Hause, D. Stack, et al. Cloning, characterization and immunolocalization of a mycorrhiza-inducible 1-deoxy-D-xylulose-5-phosphate reductoisomerase in arbuscule containing cells ofmaize. Plant Physiology, 2004, 134(2): 614-624.

[40] S. Mahmoud, R. Croteau. Metabolic engineering of essential oil yield and composition in mint by altering expression of deoxy- xylulose phosphate reductoisomerase and menthofuran synthase. Proceedings of the National Academy of Sciences of USA, 2001, 98: 8915-8920.

[41] B. Veau, M. Courtois, A. Oudin, et al. Cloning and expression of cDNAs encoding two enzymes of the MEP pathway in Catha- ranthus roseus. Biochimica Biophysica Acta, 2000, 1517: 159- 163.

[42] 贺小青, 方鹏飞. 青蒿素及其衍生物的药理作用[J]. 医药导报, 2006, 25(6): 528-530.

[43] J. Chappell, F. Wolf, J. Proulx, et al. Is the reaction catalyzed by 3-hydroxyl-3-methylglutaryl coenzyme A reductase rate-limiting step for isoprenoid biosynthesis in plants? Plant Physiology, 1995, 109: 1337-1343.

[44] 王剑文, 邹婷, 张犇. 青蒿素生物合成研究进展[J]. 抗感染药学, 2009, 6(2): 77-82.

[45] G. Pu, D. Ma, J. Chen, et al. Salicylic acid activates artemisinin biosynthesis in Artemisia annua L. Plant Cell Reports, 2009, 28: 1127-1135.

[46] D. Chen, J. Chen, H. Ye, et al. Ri-mediated transformation of Artemisia annua with a recombinant farnesyl diphosphate syn- thase gene for artemisinin production. Plant Cell, Tissue and Or- gan Culture, 1999, 57: 157-162.

[47] D. Chen, H. Ye, G. Li, et al. Expression of a chimeric farnesyl diphosphate synthase gene in Artemisia annua L. transgenic plants via Agrobacterium tumefaciensmediated transformation. Plant Sci- ence, 2000, 155: 179-185.

[48] L. Feng, R. Yang, X. Yang, et al. Synergistic re-channeling of mevalonate pathway for enhanced artemisinin production in trans- genic Artemisia annua. Plant Science, 2009, 177: 57-67.

[49] V. Martin, D. Pitera, S. Withers, et al. Engineering a mevalonate pathway in Escherich coli for production of terpenoids. Nature Biotechnology, 2003, 21(7): 796-803.

[50] J. Newman, J. Marshall, M. Chang, et al. High level production amorpha-4,11-diene in a two-phase partitioning bioreactor of me- tabolically engineered Escherichia coli. Journal of Biotechnol- ogy, 2006, 95(4): 684-691.

[51] D. Ro, I. Parad, M. Ouellet, et al. Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature, 2006, 440(7086): 940-943.

[52] Y. Gong, Z. Liao, B. Guo, et al. Molecular cloning and expres- sion profile analysis of Ginkgo biloba DXS gene encoding 1- deoxy-D-xylulose-5-phosphate synthase, the first committed en- zyme of the 2-C-methyl-D-erythritol-4-phosphate pathway. Plan- ta Medica, 2006, 72: 329-335.

[53] F. Rohdich, J. Wungsintaweekul, W. Eisenreich, et al. Biosynthesis of terpenoids: 4-diphosphocytidyl-2-C-methyl-D-erythri- tol synthase of Arabidopsis thaliana. Proceedings of the National Academy of Sciences of USA, 2000, 97: 6451-6456.

[54] 王学勇, 崔光红, 黄璐琦等. 丹参4-(5’-二磷酸胞苷)-2-C-甲基-D-赤藓醇激酶的cDNA全长克隆及其诱导表达分析[J]. 药学学报, 2008, 43(12): 1251-1257.

[55] 郑清平, 余龙江, 刘智等. 红豆杉细胞非甲羟戊酸途径关键酶基因dxr的克隆与分析[J]. 生物工程学报, 2004, 4: 548-553.

[56] O. Expósito, M. Bonfill, M. Onrubia, et al. Effect of taxol feed- ing on taxol and related taxane production in Taxus baccata su- spension cultures. New Biotechnology, 2009, 25(4): 252-259.

[57] H. Suzuki, L. Achnine, R. Xu, et al. Agenomics approach to the early stages of triterpene saponin biosynthesis in Medicago trun- catula. The Plant Journal, 2002, 32(6): 1033-1048.

[58] Z. Liao, Q. Tan, Y. R. Chai, et al. Cloning and characterization of the gene encoding HMG-CoA reductase from Taxus media and its functional identification in yeast. Functional Plant Biology, 2004, 31: 73-81.

[59] 曹小迎, 蒋继宏, 刘群等. 大戟甲羟戊酸途径关键酶基因hmgr的克隆与分析[J]. 武汉植物学研究, 2007, 25(2): 123- 126.

[60] 杜鹃. 蹄叶橐吾萜类化合物合成相关基因克隆及功能研究[D]. 吉林大学, 2007.

[61] D. Choi, J. Jung, Y. Ha, et al. Analysis of transcripts in methyl jasmonate-treated ginseng hairy roots to identify genes involved in the biosynthesis of ginsenosides and other secondary metabo- lites. Plant Cell Reports, 2005, 23(8): 557-566.

[62] J. Seo, J. Jeong, C. Shin, et al. Overexpression of squalene syn- thase in Eleutherococcus senticosus increases phytosterol and triterpene accumulation. Phytochemistry, 2005, 66(8): 869-877.

分享
Top