﻿ 基于目标规划法的灰色Verhulst负荷预测模型

# 基于目标规划法的灰色Verhulst负荷预测模型Grey Verhulst Load Forecasting Model Based on Objective Programming

Abstract: In order to overcome the defects of parameters estimation in traditional grey Verhulst model by means of least square procedure, and enhance the forecasting accuracy of grey Verhulst model in medium and long-term load forecasting for load growth in S-type or load growth being saturated, an estimation method based on least absolute de- viation, which use objective programming to estimate the parameters of grey Verhulst is presented. Then, this model is applied to long-term load forecasting, and is compared with the traditional grey Verhulst model. The results show that the method takes advantages of the benefits of least absolute deviation, which is small influenced by singular value, and robustness is good. This model avoids the defects of parameters estimation in traditional grey Verhulst model by means of least square procedure, and forecasting precision is higher.

[1] 俞明生, 冯桂宏, 杨祥. 组合优化灰色模型在中长期电力负荷预测中的应用[J]. 沈阳工业大学学报, 2007, 29(2): 450- 453.

[2] 徐军华, 刘天琪. 基于小波分解和人工神经网络的短期负荷预测[J]. 电网技术, 2004, 28(8): 30-33.

[3] 李元诚, 方廷健, 于尔铿. 短期负荷预测的支持向量机方法研究[J]. 中国电机工程学报, 2003, 23(6): 55-59.

[4] 杨延西, 刘丁. 基于小波变换和最小二乘支持向量机的短期电力负荷预测[J]. 电网技术, 2005, 29(13): 60-64.

[5] 高强, 王胜辉, 徐建源. 基于人工神经网络的中期电力负荷预测[J]. 沈阳工业大学学报, 2004, 26(1): 41-43.

[6] 王成山, 杨军, 张崇见. 灰色系统理论在城市年用电量预测中的应用——不同预测方法的分析比较[J]. 电网技术, 1999, 23(2): 15-18.

[7] 张伏生, 刘芳, 赵文彬等. 灰色Verhulst模型在中长期负荷预测中的应用[J]. 电网技术, 2003, 27(5): 37-39.

[8] 张俊芳, 吴伊昂, 吴军基. 基于灰色理论负荷预测的应用研究[J]. 电力自动化设备, 2004, 24(5): 24-26.

[9] 王福建, 李铁强, 俞传正. 道路交通事故灰色Verhulst预测模型[J]. 交通运输工程学报, 2006, 6(1): 122-126.

[10] Z. J. Guo, J. Ye and X. Q. Song. Verhulst model on time series error corrected for port throughput forecasting. Journal of the Eastern Asia Society for Transportation Studies, 2005, 6: 881- 891.

[11] D. H. Li. Verhulst model to predicate ground displacement and deformation. Coal Science and Technology, 2004, 32(3): 58-59.

[12] 安德洪, 韩文秀, 岳毅宏. 组合预测法的改进及其在负荷预测中的应用[J]. 系统工程与电子技术, 2006, 26(6): 842-844.

[13] V. N. Vapnik. The nature of statistical learning theory. Heidell- berg: Springer Verlag, 1995.

Top