Peyrard-Bishop DNA模型中分立呼吸子的存在与稳定性分析
The Existence and Stability of Discrete Breathers in Peyrard-Bishop DNA Model

作者: 吕彬彬 :北京有色金属研究总院稀土材料国家工程研究中心,有研稀土新材料股份有限公司; 叶纬明 :北京师范大学管理学院复杂网络研究中心,系统科学系; 田 强 :北京师范大学物理系;

关键词: Peyrard-Bishop DNA模型分立呼吸子非线性作用Peyrard-Bishop DNA Model Discrete Breathers Nonlinear Effect

摘要:

本文通过局域非简谐近似、旋转波近似和数值方法证明了Peyrard-Bishop DNA模型中存在分立呼吸子,通过弗洛开单位圆的稳定性分析方法讨论了模型中存在的分立呼吸子的稳定性问题,得到分立呼吸子的稳定性、局域性及振幅均与模型中非线性作用的大小有关。

Abstract: The existence of discrete breathers in Peyrard-Bishop DNA model is proved by using rotating wave ap- proximation, local anharmonic approximation and numerical calculation. At the same time, the linear stability of discrete breathers is investigated in this model by using Floquet analysis. The stability, localization and amplitude of dis- crete breathers in Peyrard-Bishop DNA model correlate closely to system nonlinear effect.

文章引用: 吕彬彬 , 叶纬明 , 田 强 (2012) Peyrard-Bishop DNA模型中分立呼吸子的存在与稳定性分析。 应用物理, 2, 102-107. doi: 10.12677/APP.2012.23018

参考文献

[1] F. Zhang, M. A. Collins. Model simulations of DNA dynamics. Physical Review E, 1995, 52(4): 4217-4224.

[2] A. S. Davy-dov. Solitons in molecular systems. Boston: Kluwer Dordrecht, 1981.

[3] E. Z. Sillero, A. V. Shapovalov and F. J. Esteban. Formation, control, and dynamics of N localized structures in the Peyrard- Bishop model. Physical Review E, 2007, 76(6): Article ID: 066603.

[4] L. I. Yakushevich, A. V. Savin and L. I. Manevitch. Nonlinear dynamics of topological solitons in DNA. Physical Review E, 2002, 66(1): Article ID: 016614.

[5] S. Flach, C. R. Willis. Discrete breathers. Physics Reports, 1998, 295: 181-264.

[6] B. B. Lv, Y. P. Deng and Q. Tian. Discrete breathers in a model with Morse potentials. Chinese Physics B, 2010, 19(2): Article ID: 026302.

[7] Q. Xu, Q. Tian. Periodic, quasiperiodic and chaotic discrete breath- ers in a parametrical driven two-dimensional discrete Klein- Gordon lattice. Chinese Physics Letters, 2009, 26(4): Article ID: 040501.

[8] B. B. Lv, Q. Tian. Discrete gap breathers in a two-dimensional diatomic face-centered square lattice. Chinese Physics B, 2009, 18(10): 4393-4406.

[9] B. B. Lv, Q. Tian. Different kinds of discrete breathers in three types of one-dimensional models. Communi-cations in Theoreti- cal Physics, 2010, 54(4): 728.

[10] B. B. Lv, Q. Tian. Discrete breathers in a two-dimensional Morse lattice with an on-site harmonic potential. Frontiers of Physics, 2009, 4(4): 497-504.

[11] B. B. Lv, Q. Tian. Different kinds of dis-crete breathers in a Sine- Gordon lattice. Frontiers of Physics, 2010, 5(2): 199-204.

[12] P. Binder, D. Abraimov, A. V. Ustinov, S. Flach and Y. Zolo- taryuk. Observation of breathers in Jo-sephson ladders. Physical Review Letters, 2000, 84(4): 745-748.

[13] M. Peyrard, A. R. Bishop. Statistical mechanics of a nonlinear model for DNA denaturation. Physical Review Letters, 1989, 62(23): 2755-2758.

[14] L. V. Yakushevich. Nonlinear DNA dynamics: A new model. Physics Letters A, 1989, 136(7-8): 413-417.

[15] M. Peyrard. Nonlinear dynamics and statistical physics of DNA. Nonlinearity, 2004, 17: R1-R40.

[16] T. Dauxois, N. Theodorakopoulos and M. Peyrard. Thermody- namic instabilities in one dimension: Correlations, scaling and solitons. Journal of Statistical Physics, 2002, 107(3-4): 869-91.

[17] A. J. Sievers, S. Takeno. Intrinsic local-ized modes in anhar- monic crystals. Physical Review Letters, 1988, 61(8): 970-973.

[18] S. Aubry. Breathers in nonlinear lat-tices: Existence, linear stabil- ity and quantization. Physica D, 1997, 103(1): 201-250.

分享
Top