磁性纳米材料在肿瘤靶向治疗中的应用
Application of Magnetic Nano-Materials in Tumor Targeted Therapy

作者: 刘 永 :连云港中复连众复合材料集团有限公司; 姜 炜 , 李凤生 :南京理工大学国家特种超细粉体工程技术研究中心;

关键词: 磁性纳米材料磁靶向肿瘤靶向治疗Magnetic Nano-Materials Magnetic Targeting Tumor Targeted Therap

摘要:
纳米磁靶向给药系统是将纳米技术、生物技术及磁靶向技术有机结合,借助纳米磁性材料良好的磁靶向性,通过外加磁场定位,将药物选择性地聚集于病灶部位,在细胞或亚细胞水平上发挥药效作用。本文详细介绍了纳米磁性材料应用于肿瘤磁靶向治疗中的研究进展,并对其发展前景进行了展望。
The targeted drug delivery system is the combination of nanotechnology, biotechnology and magnetic targeting technology. Combined with excellent magnetic targeted property, the drug is gathered selectively at the lesion site by an external magnetic field and shows effect at the cellular or subcellular level. The application of nano-magnetic materials to tumor magnetic targeted therapy is generalized in detail and the future prospect of them is also presented in this paper.

文章引用: 刘 永 , 姜 炜 , 李凤生 (2012) 磁性纳米材料在肿瘤靶向治疗中的应用。 物理化学进展, 1, 21-26. doi: 10.12677/JAPC.2012.13005

参考文献

[1] H. T. Chana, Y. Y. Doa, P. L. Huang, et al. Preparation and pro- perties of bio-compatible magnetic Fe3O4 nanoparticles. Journal of Magnetism and Magnetic Materials, 2006, 304: e415-e417.

[2] Y. J. Lee, K. W. Jun, J. Y. Park, et al. A simple chemical route for the synthesis of γ-Fe2O3 nano-particles dispersed in organic sol- vents via an iron-hydroxy oleate precursor. Journal of Industrial and Engineering Chemistry, 2008, 14(1): 38-44.

[3] S. H. Sun, H. Zeng, D. B. Robinson, et al. Monodisperse MFe2O4 (M = Fe, Co, Mn) Nano-particles. Journal of the Amer- ican Chemical Society, 2004, 126(1): 273-279.

[4] A. H. Lu, E. L. Salabas and F. Schüth. Magnetic nanoparticles: Synthesis, protection, function-alization and application. Ange- wandte Chemie International Edition, 2007, 46(8): 1222-1244.

[5] C. Alexiou, R. J. Schmid, R. Jurgons, et al. Targeting cancer cells: Magnetic nanoparticles as drug carriers. European Bio- physics Journal, 2006, 35(5): 446-450.

[6] N. Tobias. Superparamagnetic nanoparticles for biomedical applications: Possibilities and limitations of a new drug delivery system. Journal of Magnetism and Magnetic Materials, 2005, 293(1): 483-496.

[7] J. Dobson. Magnetic nanoparticles for drug delivery. Drug De-velopment Research, 2006, 67: 55.

[8] A. E. Senyei, K. J. Widder. Drug targeting: Magnetically re- sponsive albumin microspheres—A review of the system to date. Gynecologic Oncology, 1981, 12(1): 1-13.

[9] A. S. Lübbe, C. Bergemann, J. Brock, et al. Physiologicalaspects in magnetic drug targeting. Journal of Magnetism and Magnetic Materials, 1999, 194(1): 149-155.

[10] A. S. Lübbe, C. Alexiou and C. Bergemann. Clinical applica- tions of magnetic drug targeting. Journal of Surgical Research, 2001, 95(2): 200-206.

[11] C. Alexiou, W. Arnold, R. J. Klein, et a1. Locoregional cancer treatment with magnetic drug targeting. Cancer Research, 2000, 60(23): 6641-6648.

[12] 任非, 陈建良, 陈志良等. MMC聚氰基丙烯酸正丁酯磁性纳米球对BEL-7402人肝癌细胞裸小鼠移植瘤的作用[J]. 第四军医大学学报, 2005, 16(26): 1510-1512.

[13] E. Munnier, S. Cohen-Jonathan, C. Linassier, et al. Novel method of doxorubicin-SPION reversible association for magnetic drug targeting. International Journal of Pharmaceutics, 2008, 363(1-2): 170-176.

[14] K. J. Widder, A. E. Senyer, D. G. Scarpelli, et al. Magnetic mi- crospheres: A model system for site specific drug delivery in vivo. Proceedings of the Society for Experimental Biology and Medicine, 1978, 158(2): 141-146.

[15] 常津. 具有靶向抗癌功能的纳米高分子材料-阿霉素免疫磁性毫微粒的体内磁靶向定位实验[J]. 中国生物医学工程学报, 1996, 15(4): 354-359.

[16] M. Babincova, V. Altanerova, M. Lampert, et al. Site-specific in vivo targeting of magneto-liposomes using externally applied magnetic field. Zeitschrift Naturforschung, 2000, 55(3-4): 278- 281.

[17] S. Goodwin, C. Peterson, C. Hoh, et al. Targeting and retention of magnetic targeted carriers (MTCs) enhancing intra-arterial chemotherapy. Journal of Magnetism and Magnetic Materials, 1999, 194(1-3): 132-139.

[18] 曹金全, 汪勇先, 于俊峰等. 磁性纳米微粒的188Re标记[J]. 同位素, 2004, 17(2): 84-89.

[19] U. Häfeli, G. Pauer, S. Failing, et al. Radiolabeling of magnetic particles with rhenium-188 for cancer therapy. Journal of Mag- netism and Magnetic Materials, 2001, 225(1-2): 73-78.

[20] P. Wust, B. Hildebrandt, G. Sreenivasa, et al. Hyperthermia in combined treatment of cancer. The Lancet Oncology, 2002, 3(8): 487-497.

[21] R. Langer, J. L. Cleland and J. Hanes. New advances in micro- sphere-based single-dose vaccines. Advanced Drug Delivery Reviews, 1998, 28(1): 97-119.

[22] U. O. Häfeli. Magnetically modulated therapeutic systems. In- ternational Journal of Pharmaceutics, 2004, 277(1-2): 19.

[23] R. K. Gilchrist, R. Medal, W. D. Shorey, et al. Selective induc- tive heating of lymph nodes. Annals of Surgery, 1957, 146: 596- 606.

[24] A. Jordan, R. Scholz, P. Wust, et al. Effects of magnetic fluid hyperthermia (MFH) on C3H mammary carcinoma in vivo. In- ternational Journal of Hyperthermia, 1997, 13(6): 587-605.

[25] M. Yanase, M. Shinkai, H. Honda, et al. Intracellular hyperther- mia for cancer using magnetite cationic liposomes: An in vitro study. Japanese Journal of Cancer Research, 1996, 89(4): 463- 469.

[26] A. Jordan, R. Scholz, K. Maoer-Hauff, et al. The effect of ther- motherapy using magnetic nanoparticles on rat malignant glioma. Journal of Neuro-Oncology, 2006, 78(1): 7-14.

[27] S. Wada, L. Yue, K. Tazawak, et al. New local hypertherm ia using dextran magnetite complex (DM) for oral cavity experi- mental study in normal hamster tongue. Oral Diseases, 2001, 7(3): 192-195.

[28] S. Wada, K. Tazawak, I. Furuta, et al. Antitumor effect of new local hypertherm is using dextran magnetite complex in hamster tongue carcinoma. Oral Diseases, 2003, 9(4): 218-223.

[29] A. K. Guptaa, M. Gupta. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomate- rials, 2005, 26(18): 3995-4021.

[30] T. L. Andresen, S. S. Jensen and K. Jorgensen. Advanced strate- gies in liposomal cancer therapy: Problems and prospects of ac- tive and tumor specific drug release. Progress in Lipid Research, 2005, 44(1): 68-97.

[31] I. Takahashi, Y. Emi, S. Hasuda, et al. Clinical application of hyperthermia combined with anticancer drugs for the treatment of solid tumors. Surgery, 2002, 131(1): S78-S84.

[32] M. Xu, R. J. Myerson, C. Hunt, et al. Transfection of human tumour cells with siRNA and the increase in radiation sensitivity and the reduction in heat-induced radiosensitization. Interna- tional Journal of Hyperthermia, 2004, 20(2): 157-162.

[33] M. Xu, R. J. Myerson, W. L. Straube, et al. Radiosensitization of heat resistant human tumour cells by 1 hour at 41.1 degrees C and its effect on DNA repair. International Journal of Hyper- thermia, 2002, 18(5): 385-403.

[34] F. Zolzer, C. Strefer. G2-phase delays after irradiation and/or heat treatment as assessed by two-parameter flow cytometry. Radia- tion Research, 2001, 155(1): 50-56.

[35] K. E. Scarberry, E. B. Dickerson, J. F. McDonald, et al. Magnetic nanoparticle-peptide conjugates for in vitro and in vivo targeting and extraction of cancer cells. Journal of the American Chemical Society, 2008, 130(31): 10258-10262.

[36] Y. Sawaji, T. Sato, A. Taakeuchi, et al. Anti-angiogenic action of hyperthermia by suppressing gene expression and production of tumour-derived vascular endothelial growth factor in vivo and in vitro. British Journal of Cancer, 2002, 86(10): 1597-1603.

[37] X. T. Meng, H. C. Seton, L. T. Lu, I. A. Prior, et al. Magnetic CoPt nanoparticles as MRI contrast agent for transplanted neural stem cells detection. Nanoscale, 2011, 3(3): 977-984.

分享
Top