﻿ 基于参数单点模糊化的重心法模糊系统及其概率表示理论

# 基于参数单点模糊化的重心法模糊系统及其概率表示理论The Center-of-Gravity Fuzzy System and Its Probability Representation Theory Based on the Parameter Singleton Fuzzifier

Abstract:
The constructed fuzzy systems are not universal approximators when the normal fuzzy implications such as Lukasiewicz implication is chosen and the union operation is taken to aggregate fuzzy inference rela- tions. It is pointed in this paper that one can dissolve the problem if the parameter singleton fuzzifier is used in the construction of fuzzy system. In this paper, the center-of-gravity fuzzy systems based on Lukasiewicz implication are first constructed by use of the parameter singleton fuzzifier, then the universal approximations of the fuzzy systems are proved and the sufficient conditions for the fuzzy system as universal approximator are given. In the end, the joint probability density functions, the marginal density functions and numerical characteristics such as mathematical expectations, variances and covariances for the fuzzy system are ob- tained.

[1] 王立新著, 王迎军译. 模糊系统与模糊控制教程[M]. 北京: 清华大学出版社, 2003.

[2] 李洪兴, 尤飞, 彭家寅, 曾文艺. 基于模糊蕴涵算子的模糊控制器及其响应函数[J]. 自然科学进展, 2003, 13(10): 1073-1077.

[3] 李洪兴, 彭家寅, 王加银. 常见模糊蕴涵算子的模糊系统及其响应函数[J]. 控制理论与应用, 2005, 22(3): 341-347.

[4] 袁学海, 李洪兴, 孙凯彪. 基于参数单点模糊化方法的模糊系统及其逼近能力[J]. 电子学报, 2011, 39(10): 2372-2377.

[5] 李洪兴. 模糊系统的概率表示[J]. 中国科学E辑, 2006, 36(4): 373-397.

[6] 袁学海, 李洪兴. 基于输入-输出数据的概率分布和数字特征[J]. 模糊系统与数学, 2011, 25(1): 69-78.

[7] X. J. Zeng, M. G. Singh. Approximation theory of fuzzy systems-SISO case. IEEE Transactions on Fuzzy Systems, 1994, 2(2): 162-176.

Top