土壤优先流的离子显色示踪技术与分形模型模拟方法研究
Characterizing Preferential Flow Using Iodine-Starch Staining Method and Active Region Model

作者: 盛 丰 , 王 康 , 张仁铎 :;

关键词: 优先流溶质运移显色示踪技术分形活动流场模型Preferential Flow Dye Tracing Technique Fractal Active Region Model Mobile-Immobile Region Model

摘要: 为获得优先流的非均匀运动模式、提高优先流模拟预测的精度,本文运用碘-淀粉显色示踪技术,将优先流流场从流动背景中显示出来,通过数字图像分析技术和采样分析,获得优先流流场及流场内的土壤含水率和溶质浓度的非均匀分布模式;在此基础上,分别运用活动流场模型和二域模型对试验条件下的水流运动和溶质运移结果展开模分析,并通过相对标准偏差分析定量评价活动流场模型和二域模型模拟预测优先流发展的有效性。相对标准偏差分析显示,相对于二域模型,活动流场模型对土壤水流运动和溶质运移的模拟预测精度均较高。研究结果表明,活动流场模型较好的捕捉到了土壤优先流的整体非均匀信息。

Abstract: To capture the heterogeneous flow pattern and enhance the prediction accuracy of preferential flow in unsaturated soil, the iodine-starch staining method was applied to visualize the preferential flow pattern from the background in this research. The digital imaging procedure was conducted to obtain the heterogeneous distribution pattern of preferential flow paths, and soil sampling was conducted to obtain the heterogeneous distributions of soil water content and solute concentration in the preferential flow region. The measured distributions of soil water content and solute concentration resulted from preferential flow were simulated and predicted using the active region model (ARM) and the mobile-immobile region model (MIM). The modeling efficiency using ARM and MIM were quantitatively evaluated and compared using the relative root mean square error (RRMSE) analysis. The model evaluation and comparison revealed that, ARM produced more accurate infiltration depth, and soil water and solute concentration distributions predictions, showing the ARM captured the macroscopic behavior of preferential flow and transport well.

文章引用: 盛 丰 , 王 康 , 张仁铎 (2012) 土壤优先流的离子显色示踪技术与分形模型模拟方法研究。 水资源研究, 1, 79-85. doi: 10.12677/JWRR.2012.13012

参考文献

[1] HENDRICKX, J. M. H., FLURY, M. Uniform and preferential flow mechanisms in the vadose zone. In: National Research Council: Conceptual Models of Flow and Transport in the Fractured Vadose Zone, Washington DC: National Academy Press, 2001: 149-187.

[2] ALLAIRE, S. E., ROULIER, S. and CESSNA, A. Quantifying preferential flow in soils: A review of different techniques. Journal of Hydrology, 2009, 378(1-2): 179-204.

[3] HANGEN, E., GERKE, H. H., SCHAAF, W., et al. Flow path visualization in a lignitic mine soil using iodine-starch staining. Geodema, 2004, 120(1-2): 121-135.

[4] VAN OMMEN, H. C., DEKKER, L.W., DIJKSMA, R., et al. A new technique for evaluating the presence of preferential flow paths in nonstructured soils. Soil Science Society of America Journal, 1988, 52(4): 1192-1193.

[5] ŠIMŮNEK, J., JARVIS, N. J., VAN GENUCHTEN, M. T., et al. Review and comparison of models for describing non-equilib- rium and preferential flow and transport in the vadose zone. Journal of Hydrology, 2003, 272(1-4): 14-35.

[6] LIU, H., ZHANG, R. and BODVARSSON, G. S. An active region model for capturing fractal flow patterns in unsaturated soils: Model development. Journal of Contaminant Hydrology, 2005, 80(1-2): 18-30.

[7] MANDELBROT, B. B. The fractal geometry of nature. New York: W.H. Freeman, 1982.

[8] SMITH, J. E., ZHANG, Z. F. Determining effective interfacial tension and predicting finger spacing for DNAPL penetration into water-saturated porous media. Journal of Contaminant Hydrology, 2001, 48(1-2): 167-183.

[9] BASILE, A., COPPOLA, A., DE MASCELLIS, R., et al. Scaling approach to deduce field unsaturated hydraulic properties and behavior from laboratory measurements on small cores. Vadose Zone Journal, 2006, 5(3): 1005-1016.

[10] MORRIS, C., MOONEY, S. J. A high-resolution system for the quantification of preferential flow in undisturbed soil using observations of tracers. Geoderma, 2004, 118(1-2): 133-143.

[11] SHENG, F., WANG, K., ZHANG, R., et al. Characterizing soil preferential flow using iodine-starch staining experiments and the active region model. Journal of Hydrology, 2009, 367(1-2): 115-124.

[12] 盛丰, 张仁铎, 刘会海. 基于分形理论的土壤优先流运动控制方程[J]. 农业工程学报, 2011, 27(2): 52-56. SHENG Feng, ZHANG Renduo and LIU Huihai. Governing equations for modeling preferential flow in unsaturated soil based on fractal theory. Transaction of CSAE, 2011, 27(2): 52-56. (in Chinese)

[13] VAN GENUCHTEN, M. T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 1980, 44(5): 892-898.

[14] VAN GENUCHTEN, M. T., WIERENGA, P. J. Mass transfer studies in sorbing porous media. I. Analytical solutions. Soil Science Society of America Journal, 1976, 40(4): 473-481.

[15] VAN GENUCHTEN, M. T., LEIJ, F. J. and YATES, S. R. The RETC code for quantifying the hydraulic functions of unsaturated soils. US Environmental Protection Agency, 1991.

[16] VANYSEK, P. Ionic conductivity and diffusion at infinite dilution. In: LIDE, D. R., Ed., CRC Handbook of Chemistry and Physics, 83rd Editon, Boca Raton: CRC Press, 2002.

[17] ŠIMŮNEK, J., VOGEL, T. and VAN GENUCHTEN, M. T. The SWMS_2D code for simulating water flow and solute transport in two-dimensional variably saturated media. Version 1.21, Research Report No. 132, Riverside: US Salinity Laboratory, 1994.

[18] LARSSON, M. H., JARVIS, N. J., TORSTENSSON, G., et al. Quantifying the impact of preferential flow on solute transport to tile drains in a sandy field soil. Journal of Hydrology, 1999, 215(1-4): 116-134.

[19] VAN DAM, J. C., WOSTEN, J. H. M. and NEMES, A. Unsaturated soil water movement in hysteretic and water repellent field soils. Journal of Hydrology, 1996, 184(3-4): 153-173.

[20] WANG, K., ZHANG, R. and YASUDA, H. Characterizing heterogeneous soil water flow and solute transport using information measures. Journal of Hydrology, 2009, 370(1-4): 109-121.

分享
Top