北京市再生灌区地下水动态特征及数值模拟研究
Groundwater Dynamic Characteristics and Numerical Simulation for Reclaimed Water Reclaimed Water Irrigation District

作者: 尹世洋 * , 刘洪禄 , 潘兴瑶 :北京市水科学技术研究院; 吴文勇 , 徐小元 :北京市非常规水资源与节水工程技术研究中心;

关键词: 再生水灌区地下水动态特征数值模拟Reclaimed Water Irrigation District Groundwater Dynamic Characteristics Numerical Simulation

摘要: 本文基于GMS软件建立了北京市再生水灌区地下水数值模型,预测了不同情景下地下水的动态变化趋势及调控方案。研究表明,随着再生水灌区的再生水利用率逐步提高,灌区内的地下水水位逐步抬升,向下游地区的侧向排泄量也呈加大趋势;为了减少下游的侧向排泄量、避免该区域由于地下水位过高而产生土壤次生盐渍化,应控制灌区内的地下水位埋深;再生水利用率达到50%时,每年需开采出3307.2m3置换的浅层地下水资源,再生水利用率达到70%时,每年需开采出4567.0m3置换的浅层地下水资源,再生水利用率达到90%时,每年需开采出6128.3m3置换的浅层地下水资源。研究成果对再生水的安全利用、地下水资源的涵养具有重要意义。

Abstract:  In order to predict the changing trends of groundwater under different scenarios and make regulation programs, a groundwater numerical model of reclaimed water irrigation district is developed based on GMS software. Research results indicate that with the gradual increase of reclaimed water utilization, irrigation area groundwater level progressive uplift, lateral excretion to the lower reaches also show a trend of increase. In order to avoid the soil salinization, shallow groundwater resources must be mining to control the depth of groundwater according to the different utilization rates of the reclaimed water. 50% of total water consumption is reclaimed water, 33.1 million m3 replacement of shallow groundwater resources should be exploited, 70% of total water consumption is reclaimed water, 45.7 million m3 replacement of shallow groundwater resources should be exploited, 90% of total water consumption is reclaimed water, 61.3 million m3 replacement of shallow groundwater resources should be exploited. The results are meaningful to guide safety usage with reclaimed water and conservation of groundwater resources.

文章引用: 尹世洋 , 吴文勇 , 刘洪禄 , 潘兴瑶 , 徐小元 (2012) 北京市再生灌区地下水动态特征及数值模拟研究。 水资源研究, 1, 440-446. doi: 10.12677/JWRR.2012.16070

参考文献

[1] 尹世洋, 吴文勇, 刘洪禄, 等. 北京市农业用水监测与评价[J]. 北京水务, 2011, 增刊1: 54-59. Yin Shiyang, Wu Wenyong, Liu Honglu, et al. Utilization status and monitoring of reclaimed water for agriculture in Beijing. Beijing Water, 2011, Suppl. 1: 54-59. (in Chinese)

[2] 白利平, 王金生. GMS 在临汾盆地地下水数值模拟中的应用[J]. 山西建筑, 2004, 30(16): 78-82. BAI Liping, WANG Jinsheng. The application of GMS in numerical simulation of ground water in Linfen basin. Shanxi Architecture, 2014, 30(16): 78-82. (in Chinese)

[3] 谭文清, 孙春, 胡婧敏, 等. GMS在地下水污染质运移数值模拟预测中的应用[J]. 东北水利水电, 2008, 16(5): 54-59. TAN Wenqing, SUN Chun, HU Jingmin, et al. Application of GMS in simulation of pollutants migration for groundwater. Water Resources & Hydropower of Northeast, 2008, 16(5): 54- 59. (in Chinese)

[4] 孙讷正. 地下水污染——数学模型和数值方法[M]. 北京: 地质出版社, 1981: 10-13. SUN Nazheng. Mathematical modeling of groundwater pollution. Beijing: Geological Publishing House, 1981: 10-13. (in Chinese)

[5] 李俊亭. 地下水流数值模拟[M]. 北京: 地质出版社, 1989: 23-30. LI Junting. Groundwater numerical simulation. Beijing: Geological Publishing House, 1989: 23-30. (in Chinese)

[6] 卢文喜. 地下水运动数值模拟过程中边界条件问题探讨[J]. 水利学报, 2003, 3: 33-36. LU Wenxi. Approach on boundary condition in numerical simu- lation of groundwater flows. Journal of Hydraulic Engineering, 2003, 3: 33-36. (in Chinese)

[7] 张明江, 门国发, 陈崇希, 等. 渭干河流域三维地下水流数值模拟[J]. 新疆地质, 2004, 22(3): 238-243. ZHANG Mingjiang, MEN Guofa, CHEN Chongxi, et al. Three- dimensional digital simulating of Groundwater. Flow of Weigan river Drainage area. Xinjiang Geology, 2004, 22(3): 238-243. (in Chinese)

[8] 王宏, 娄华君, 邹立芝. Modflow在华北平原区地下水库模拟中的应用[J]. 世界地质, 2003, 22(1): 69-72. WANG Hong, LOU Huajun and ZOU Lizhi. The application of modflow software in the simulation for the underground reser- voir of Huabei plain. Global Geology, 2004, 22(3): 238-243. (in Chi-nese)

分享
Top