新型假单胞菌对羟基苯乙腈水解酶及其性质研究
A New 4-Hydroxyphenylcyanide Nitrilases from Pseudomonas Sp. and Its Catalytic Properties

作者: 曹明乐 :山东大学微生物技术国家重点实验室,济南 ; 姜兴林 , 张海波 , 咸 漠 , 徐 鑫 , 刘 炜 :中国科学院青岛生物能源与过程研究所,青岛 ;

关键词: 对羟基苯乙腈对羟基苯乙酸腈水解酶生物催化4-Hydroxyphenylcyanide 4-Hydroxyphenylacetic Acid Nitrilase Biocatalysis

摘要: 腈水解酶催化的腈水解具有反应高效、条件温和、环境污染小和成本低等优点,在有机合成、材料合成、医药、食品、农业、畜牧业及环境等污染方面有着重要的应用前景。本研究利用初步活化和分步胁迫富集,通过Berthelot法高通量筛选与高压液相精细筛选获得一株底物对4-羟基苯乙腈具有较好的催化活性的菌株;经过培养基初步优化,产酶量达到28.47 U/ml;铜离子对该酶具有较强的抑制作用,酶学性质研究表明该菌株能够在pH 6.2~pH 7.3之间酶活性能够保持在最高酶活性的80%以上,在35~45范围内催化活性大于最大酶活性的80%,反应18 h后离心菌体二次催化几乎不丧失活性;该菌株在开发对羟基苯乙腈合成对羟基苯乙酸具有较高的开发价值。

Abstract: Nitrilases can hydrolyze nitrile efficiently under mild conditions. The enzymatic methods have the advantages of less pollution, low cost compared with the chemical methods. Nitrilases are potentially applied in agriculture, industry, environment, and biomedicine. In this study, Berthelot method and high performance liquid chromatography were used to screen new stains for nitrilases. A nitrilase with high substrate specificity for 4-hydroxyphenylcyanide was found from Pseudomonas sp. 6-1. The stain produced 28.47 U/ml nitrilase after optimization of the culture conditions. The enzyme remained 80% activities at pH 6.6 to pH 7.6, temperature 35˚C to 45˚C, and it was stable after 18 h incubation. The stain can be potentially used in biosynthesis 4-Hydroxyphenylacetic acid using 4-hydroxyphenylcyanide as substrate.

文章引用: 曹明乐 , 姜兴林 , 张海波 , 咸 漠 , 徐 鑫 , 刘 炜 (2012) 新型假单胞菌对羟基苯乙腈水解酶及其性质研究。 生物过程, 2, 70-74. doi: 10.12677/bp.2012.22012

参考文献

[1] S. L. Kitson, W. Watters, V. L. Murrell, et al. Hydrolysis of [(14)C]nitrile using nitrilase (Nit) biocatalysts. Journal of Labelled Compounds & Radiopharmaceuticals, 2011, 54(7): 396- 397.

[2] C. He, C. L. Ma, J. H. Xu, et al. A high-throughput screening strategy for nitrile-hydrolyzing enzymes based on ferric hydroxamate spectrophotometry. Applied Microbiology and Biotechnology, 2011, 89(3): 817-823.

[3] L. Martinkova, V. Kren. Biotransformations with nitrilases. Current Opinion in Chemical Biology, 2010, 14(2): 130-137.

[4] S. Baum, D. S. Williamson, T. Sewell, et al. Conversion of sterically demanding alpha, alpha-disubstituted phenylacetonitriles by the arylacetonitrilase from Pseudomonas fluorescens EBC191. Applied and Environmental Microbiology, 2012, 78(1): 48-57.

[5] C. S. Yang, X. D. Wang and D. Z. Wei. A new nitrilase-producing strain named Rhodobacter sphaeroides LHS-305: Biocatalytic characterization and substrate specificity. Applied Biochemistry and Biotechnology, 2011, 165(7-8): 1556-1567.

[6] S. J. Yeom, J. K. Lee and D. K. Oh. A positively charged amino acid at position 129 in nitrilase from Rhodococcus rhodochrous ATCC 33278 is an essential residue for the activity with meta-substituted benzonitriles. Febs Letters, 2010, 584(1): 106- 110.

[7] H. Luo, L. Fan, Y. H. Chang, et al. Gene cloning, overexpression, and characterization of the nitrilase from Rhodococcus rhodochrous tg1-A6 in E. coli. Applied Biochemistry and Biotechnology, 2010, 160(2): 393-400.

[8] A. Petrickova, A. B. Vesela, O. Kaplan, et al. Purification and characterization of heterologously expressed nitrilases from filamentous fungi. Applied Microbiology and Biotechnology, 2012, 93(4): 1553-1561.

[9] O. Kaplan, K. Bezouska, O. Plihal, et al. Heterologous expression, purification and characterization of nitrilase from Aspergillus niger K10. BMC Biotechnology, 2011, 11, in press.

[10] O. Kaplan, K. Bezouska, A. Malandra, et al. Genome mining for the discovery of new nitrilases in filamentous fungi. Biotechnology Letters, 2011, 33(2): 309-312.

[11] V. Vejvoda, D. Kubac, A. Davidova, et al. Purification and characterization of nitrilase from Fusarium solani IMI196840. Process Biochemistry, 2010, 45(7): 1115-1120.

[12] H. Kakeya, N. Sakai, T. Sugai, et al. Microbial hydrolysis as a potent method for the preparation of optically active nitriles, amides and carboxylic acids. Tetrahedron Letters, 1991, 32(10): 1343-1346.

[13] M. Kobayashi, S. Shimizu. Versatile nitrilases: Nitrile-hydro- lysing enzymes. Fems Microbiology Letters, 1994, 120(3): 217- 223.

[14] 吴明火, 蔡谦, 郑裕国等. 对羟基苯乙腈水解酶产生菌的筛选及产酶条件研究[J]. 生物加工过程, 2005, 3(4): 32-44.

[15] 周冬杰, 欧阳立明, 许建和等. 土壤中腈水解酶产生菌的快速筛选[J]. 华东理工大学学报, 2009, 35(4): 545-548.

[16] 王利群, 陈萦慈, 孙晓慧等. 羟基乙腈水解酶菌株的筛选及其催化特性[J]. 微生物学通报, 2011, 38(6): 825-831.

[17] 王铁刚, 罗晖, 于慧敏等. 产腈水解酶菌株的诱变及培养优化[J]. 生物加工过程, 2007, 5(1): 41-44.

分享
Top