褐黄孢链霉菌HBJ591纳他霉素高效发酵工艺研究
High Efficient Fermentation of Natamycin with Streptomyces Gilvosporeus HBJ591

作者: 宋慧婷 :湖北大学工业生物技术湖北省重点实验室,武汉 ; 邓 锐 :湖北大学生命科学学院,武汉; 江正兵 :湖北大学工业生物技术湖北省重点实验室,武汉 ;湖北大学生命科学学院,武汉 ;

关键词: 纳他霉素响应曲面法补料发酵Natamycin Response Surface Method Fed-Batch Fermentation

摘要: 本文以褐黄孢链霉菌HBJ591为基础,研究了补糖工艺对纳他霉素发酵的影响,结合发酵培养基的优化,实现了纳他霉素的高产发酵。结果表明,维持发酵罐中还原糖浓度为2.5%,能有效延长纳他霉素的合成时间。通过响应曲面法对褐黄孢链霉菌HBJ591菌株的发酵培养基进行优化后,结合补糖工艺,在16 L发酵罐中进行补料分批发酵,纳他霉素的发酵水平达到15.7 g/L,比原始发酵工艺的效价提高4.8倍。

Abstract: Based on the study of sugar supplement process, high efficient fermentation with Streptomyces gilvosporeus HBJ591 was carried out via the optimization of the fermentation medium. When the reducing sugar concentration in the fermenter was 2.5%, the synthetic course of natamycin was extended effectively. Response surface method was used to optimize the fermention medium of HBJ591, then fed-batch fermentation was carried out in 16 L fermenter, the natamycin fermentation level reached 15.7 g/L, and the highest yield was 4.8 times higher than the original process.

文章引用: 宋慧婷 , 邓 锐 , 江正兵 (2012) 褐黄孢链霉菌HBJ591纳他霉素高效发酵工艺研究。 生物过程, 2, 65-69. doi: 10.12677/bp.2012.22011

参考文献

[1] B. Li, G. G. Feng and C. Y. Wang. Status analysis and prospects of natamycin industry. Storage and Process, 2011, 11(2): 49-53.

[2] G. Q. Chen, F. P. Lu and L. X. Du. Natamycin production by Streptomyces gilvosporeus based on statistical optimization. Journal of Agricultural and Food Chemistry, 2008, 56(13): 5057-5061.

[3] N. Antón, J. Santos-Aberturas, M. V. Mendes, S. M. Guerra, J. F. Martín and J. F. Aparicio. PimM, a PAS domain positive regula- tor of pimaricin biosynthesis in Streptomyces natalensis. Micro- biology, 2007, 153(9): 3174-3183.

[4] Y. L. Du, S. Z. Li, Z. Zhou, S. F. Chen, W. M. Fan and Y. Q. Li. The pleitropic regulator AdpAch is required for natamycin biosynthesis and morphological differentiation in Streptomyces chattanoogensis. Microbiology, 2011, 157(5): 1300-1311.

[5] F. Qi, Z. D. Wang, T. Liu, C. G. Lu and W. C. Liu. Research advances in natamycin and its producing strain breeding. Biotechnology Bulletin, 2010, 9: 42-47.

[6] L. G. Tuinstra, W. A. Traag. Liquid chromatographic determination of natamycin in cheese at residue levels. Journal of Association of Official Analytical Chemists, 1982, 65(4): 820-822.

[7] W. C. Cai. The chemical analysis methods of biological materials. Beijing: Science Press, 1982: 56.

[8] Y. L. He, W. H. Tang. Biochemistry experiment. Wuhan: Central China Normal University Press, 2006: 141.

[9] Y. S. Yuan, W. H. Zhu and J. H. Chen. Biochemistry experiment. Beijing: Higher Education Press, 1995: 207-209.

[10] Y. L. He, J. G. Wu, F. P. Lu and L. X. Du. Fed-batch fermentation to improve the yield of natamycin. Pharmaceutical Biotechnology, 2002, 9(4): 224-226.

[11] J. Xi, M. Wang and D. Z. Lei. Natamycin extraction by ultrafiltration and nanofiltration membrane separation. Guangdong Chemical Industry, 2007, 34(8): 58-60.

[12] W. J. Cui, S. M. Cheng and W. Zhang. Optimization of extraction technology of natamycin by response surface methodology. China Brewing, 2010, 2: 138-141.

[13] G. Y. Xu, J. M. Luo, D. S. Yang and M. Wang. Optimization of natamycin fermentation culture medium and condtions. Journal of Microbiology, 2007, 127(4): 73-78.

[14] W. W. Hou. Optimization of fermentation process of natamycin producing strain Strepto-myces gilvosporeus. Wuhan: Huazhong Agricultural University, 2010.

[15] J. L. Liang. Strain mutation via satellite, process optimization and scale-up for industrial natamycin production. Hangzhou: Zhenjiang University Library, 2007.

[16] L. G. Yu, X. H. Zhang and W. J. Gong. Advances in the research of a new food Additive natamycin. China Food Additives, 2005, 4: 68-80.

[17] W. J. Cui. Study on extrction condition and assay method of natamycin. Hebei: Hebei Agricultural University, 2010.

分享
Top