纳米光子学材料与器件的研究进展
Research Progress in Nanophotonics Materials and Devices

作者: 张俊喜 * , 张立德 :;

关键词: 纳米光子学纳米光子学材料纳米光子器件量子限域效应光发射表面等离子体激元光子晶体纳米线栅偏振器Nanophotonics Nanophotonics Materials Nanophotonics Devices Quantum Confine-ment Light Emission Surface Plasmon Polaritons Photonic Crystal Nanowire Grid Polarizers

摘要:

介绍了纳米光子学的研究范畴,综述了纳米光子学材料和器件的研究动态和热点,着重阐述了基于量子限域效应、光发射、表面等离子体激元和周期性结构纳米光子学材料和器件的研究进展。

Abstract: The investigation field of nanophotonics is presented, this article provides a comprehensive review of research activities in nanophotonics materials and devices, and furthermore, the research progress of the materials and devices based on quantum confinement effect, light emission, surface plasmon polaritons (SPPs), and periodical structures is demonstrated significantly.

文章引用: 张俊喜 , 张立德 (2011) 纳米光子学材料与器件的研究进展。 应用物理, 1, 9-19. doi: 10.12677/app.2011.11002

参考文献

[1] R. P. Feynman. There’s plenty of room at the bottom—an invitation to enter a new field of physics[EB/OL]. HHHHHHHHHHHHHhttp://www.zyvex.com/nanotech/feynman.htmlHHHHHHHHHHHHH.

[2] Y. Z. Shen, C. S. Friend, Y. Jiang, et al. Nanophotonics: interactions, materials, and applications. J. Phys. Chem. B, 2000, 104(32): 7577-7587.

[3] Y. Shen, P. N. Prasad. Nanophotonics: a new multidisciplinary frontier. HHHHHHHHHHHHHApplied Physics B: Lasers and OpticsHHHHHHHHHHHHH, 2002, 74(7-8): 641-645.

[4] P. Michler, A. Kiraz, C. Becher, et al. A quantum dot single-photon turn-stile device. Science, 2000, 290(5500): 2282- 2285.

[5] C. Santori, D. Fattal, J. Vučković, et al. Indistinguishable photons from a sin-gle-photon device. Nature, 2002, 419(6907): 594- 597.

[6] Z. L. Yuan, B. E. Kardynal, R. M. Stevenson, et al. Electrically driven sin-gle-photon source. Science, 2002, 295(5552): 102- 105.

[7] F. Sotier, T. Thomay, T. Hanke, et al. Femtosecond few-fermion dynamics and deterministic single-photon gain in a quantum dot. Nat. Phys., 2009, 5(5): 352-356.

[8] S. Kako, C. Santori, K. Hoshino, et al. A gal-lium-nitride single-photon source operating at 200 K. Nat. Mater., 2006, 5(11): 887-892.

[9] X. Q. Li, Y. W. Wu, D. C. Steel, et al. An all-optical quantum gate in a semiconductor quantum dot. Science, 2003, 301(5634): 809-811.

[10] R. B. Patel, A. J. Bennett, I. Farrer, et al. Two-photon interference of the emission from electrically tunable remote quantum dots. Nat. Photonics, 2010, 4(9): 632-635.

[11] J. R. Lakowicz, I. Gryczynski, G. Piszczek, et al. Emission spectral proper-ties of cadmium sulfide nanoparticles with multiphoton Excitation. J. Phys. Chem. B, 2002, 106(21): 5365 -5370.

[12] B. Fisher, J. M. Caruge, D. Zehnder, et al. Room-temperature ordered photon emission from multiexciton states in single CdSe core-shell nanocrystals. Phys. Rev. Lett., 2005, 94(8), p.087403.

[13] S. A. Empedocles, D. J. Norris, M. G. Bawendi. Photoluminescence spectroscopy of single CdSe nanocrystallite quantum dots. Phys. Rev. Lett., 1996, 77(18): 3873-3876.

[14] S. A. Empedocles, M. G. Bawendi. Quan-tum-confined stark effect in single CdSe nanocrystallite quantum dots. Science, 1997, 278(5346): 2114-2117.

[15] V. I. Klimov, A. A. Mik-hailovsky, S. Xu, et al. Optical gain and stimulated emission in nanocrystal quantum dots. Science, 2000, 290(5490): 314-317.

[16] X. Y. Wang, L. H. Qu, J. Y. Zhang, et al. Surface-related emission in highly luminescent CdSe quantum dots. Nano Lett., 2003, 3(8): 1103-1106.

[17] D. Pacifici, H. J. Lezec, H. A. Atwater. All-optical modulation by plasmonic excitation of CdSe quantum dots. Nat. Photonics, 2007, 1(7): 402-406.

[18] A. V. Akimov, A. Mukherjee, C. L. Yu, et al. Generation of single optical plasmons in metallic nanowires coupled to quantum dots. Nature, 2007, 450(7168): 402-406.

[19] R. Beaulac, L. Schneider, P. I. Archer, et al. Light-induced spontaneous magnetization in doped colloidal quantum dots. Science, 2009, 325(5943): 973-976.

[20] Z. Y. Tang, N. A. Kotov, M. Giersig. Spontaneous organization of single CdTe nanopar-ticles into luminescent nanowires. Science, 2002, 297(5579): 237-240.

[21] J. Y. Zhang, X. Y. Wang, M. Xiao, et al. Modified spontaneous emission of CdTe quantum dots inside a photonic crystal. Opt. Lett., 2003, 28(16): 1430-1432.

[22] V. D. Kulakovskii, G. Bacher, R. Weigand, et al. Fine structure of biexciton emission in symmetric and symmetric CdSe/ZnSe single quantum dots. Phys. Rev. Lett., 1999, 82(8): 1780-1783.

[23] Q. Sun, Y. A. Wang, L. S. Li, et al. Bright, multicoloured light-emitting diodes based on quantum dots. Nat. Photonics, 2007, 1(11): 717-722.

[24] G. S. Solomon, M. Pelton, Y. Yamamoto. Single-mode spontaneous emission from a single quantum dot in a three-dimensional microcavity. Phys. Rev. Lett., 2001, 86(17): 3903-3906.

[25] E. Moreau, I. Robert, L. Manin, et al. Quantum cas-cade of photons in semiconductor quantum dots. Phys. Rev. Lett., 2001, 87(18), p.183601.

[26] S. Kan, T. Mokari, E. Rothenberg, et al. Syn-thesis and size-dependent properties of zinc-blende semiconductor quantum rods. Nat. Mater., 2003, 2(2): 155-158.

[27] E. A. Stinaff, M. Scheibner, A. S. Bracker, et al. Optical signatures of coupled quantum dots. Science, 2006, 311(5761): 636-639.

[28] O. I. Mićić, J. Sprague, Z. H. Lu, et al. Highly efficient band-edge emission from InP quantum dots. Appl. Phys. Lett., 1996, 68(22): 3150-3152.

[29] H. X. Fu, A. Zunger. InP quantum dots: electronic structure, surface effects, and the redshifted emission. Phys. Rev. B, 1997, 56(3): 1496-1508.

[30] L. Harris, D. J. Mowbray, M. S. Skolnick, et al. Emission spectra and mode structure of InAs/GaAs self-organized quantum dot lasers. Appl. Phys. Lett., 1998, 73(7): 969-971.

[31] W. Fang, J. Y. Xu, A. Yamilov, et al. Large enhancement of spontaneous emission rates of InAs quan-tum dots in GaAs microdisks. Opt. Lett., 2002, 27(11): 948-950.

[32] E. S. Moskalenko, F. K. Karlsson, V. T. Donchev, et al. Effects of separate carrier generation on the emission properties of InAs/GaAs quantum dots. Nano Lett., 2005, 5(11): 2117-2122.

[33] P. Borri, W. Langbein, S. Schneider, et al. Ultralong dephasing time in InGaAs quantum dots. Phys. Rev. Lett., 2001, 87(15), p. 157401.

[34] H. Kamada, H. Gotoh, J. Temmyo, et al. Exciton Rabi oscillation in a single quantum dot. Phys. Rev. Lett., 2001, 87(24), p. 246401.

[35] A. Högele, S. Seidl, M. Kroner, et al. Voltage -controlled optics of a quantum dot. Phys. Rev. Lett., 2004, 93(21), p.217401.

[36] Y. Narukawa, Y. Kawakami, M. Funato, et al. Role of self-formed InGaN quantum dots for exciton localization in the purple laser diode emitting at 420 nm. Appl. Phys. Lett., 1997, 70(8): 981-983.

[37] T. Fujisawa, T. H. Oosterkamp, W. G. van der Wiel, et al. Spontaneous emission spectrum in double quantum dot devices. Science, 1998, 282(5390): 932-935.

[38] D. Kovalev, H. Heckler, B. Averboukh, et al, Hole burning spectroscopy of porous silicon. Phys. Rev. B, 1998, 57(7): 3741-3744.

[39] M. Cazzanelli, D. Kovalev, L. D. Negro, et al. Polarized optical gain and polarization-narrowing of heavily oxidized porous silicon. Phys. Rev. Lett., 2004, 93(20), p. 207402.

[40] D. Kovalev, H. Heckler, M. Ben-Chorin, et al. Break-down of the k-conservation rule in Si nanocrystals. Phys. Rev. Lett., 1998, 81(13): 2803-2806.

[41] L. Bagolini, A. Mattoni, G. Fugallo, et al. Quantum confinement by an order-disorder boundary in nanocrys-talline silicon. Phys. Rev. Lett., 2010, 104(17), p.176803.

[42] M. Fuechsle, S. Mahapatra, F. A. Zwanenburg, et al. Spectroscopy of few-electron single-crystal silicon quantum dots. Nat. Nanotechnol., 2010, 5(7): 502-505.

[43] I. Sychugov, R. Juhasz, J. Valenta, et al. Narrow luminescence linewidth of a silicon quantum dot. Phys. Rev. Lett., 2005, 94(8), p. 087405.

[44] N. M. Park, C. J. Choi, T. Y. Seong, et al. Quantum confinement in amorphous silicon quantum dots em-bedded in silicon nitride. Phys. Rev. Lett., 2001, 86(7): 1355-1357.

[45] A. G. Curto, G. Volpe, T. H. Taminiau, et al. Unidi-rectional emission of a quantum dot coupled to a nanoantenna. Science, 2010, 329(5994): 930-933.

[46] J. Bleuse, J. Claudon, M. Creasey, et al. Inhibition, enhancement, and control of spontaneous emission in photonic nanowires. Phys. Rev. Lett., 2011, 106(10), p.103601.

[47] J. D. Holmes, K. P. Johnston, R. C. Doty, et al. Control of thickness and orientation of solution-grown silicon nanowires. Science, 2000, 287(5457): 1471-1473.

[48] G. P. Lansbergen, R. Rahman, C. J. Wel-lard, et al. Gate-induced quantum-confinement transition of a single dopant atom in a silicon FinFET. Nat. Phys., 2008, 4(8): 656-661.

[49] X. S. Peng, G. W. Meng, J. Zhang, et al. Strong quantum con-finement in ordered PbSe nanowire arrays. Journal of Materials Re-search, 2002, 17(6): 1283-1286.

[50] F. W. Wise. Lead salt quantum dots: the limit of strong quantum confinement. Acc. Chem. Res., 2000, 33(11): 773-780.

[51] J. F. Wang, M. S. Gudiksen, X. F. Duan, et al. Highly polarized photoluminescence and photodetection from single indium phosphide nanowires. Science, 2001, 293(5534): 1455-1457.

[52] M. H. Huang, S. Mao, H. Feick, et al. Room-temperature ultraviolet nanowire nanolasers. Science, 2001, 292(5523): 1897- 1899.

[53] P. D. Yang, H. Q. Yan, S. Mao, et al. Controlled growth of ZnO nanowires and their optical properties. Adv. Funct. Mater., 2002, 12(5): 323-331.

[54] H. Q. Yan, R. R. He, J. Johnson, et al. Dendritic nanowire ultraviolet laser array. J. Am. Chem. Soc., 2003, 125(16): 4728-4729.

[55] J. C. Johnson, H. Q. Yan, R. D. Schaller, et al. Single nanowire lasers. J. Phys. Chem. B, 2001, 105(46): 11387-11390.

[56] J. C. Johnson, H. J. Choi, K. P. Knutsen, et al. Single gallium nitride nanowire lasers. Nat. Mater., 2002, 1(2): 106-110.

[57] R. Chen, T. T. D. Tran, K. W. Ng, et al. Nanolasers grown on silicon. Nat. Photonics, 2011, 5(3): 170-175.

[58] N. F. Yu, J. Fan, Q. J. Wang, et al. Small-divergence semiconductor lasers by plasmonic collimation. Nat. Photonics, 2008, 2(7): 564-570.

[59] M. A. Noginov, G. Zhu, A. M. Belgrave, et al. Demonstration of a spaser-based nanolaser. Nature, 2009, 460(7259): 1110-1112.

[60] R. F. Service. Ever-smaller lasers pave the way for data highways made of light. Science, 2010, 328(5980): 810-811.

[61] Y. Huang, X. F. Duan, C. M. Lieber. Nanowires for integrated multicolor nanophotonics. Small, 2005, 1(1): 142-147.

[62] Y. Taniyasu, M. Kasu, T. Makimoto. An aluminium nitride light-emitting diode with a wavelength of 210 nanometres. Nature, 2006, 441(7091): 325-328.

[63] S. L. M. van Mensfoort, M. Carvelli, M. Megens, et al. Measuring the light emission profile in organic light-emitting diodes with nanometre spatial resolu-tion. Nat. Photonics, 2010, 4(3): 329-335.

[64] M. Quinten, A. Leit-ner, J. R. Krenn, et al. Electromagnetic energy transport via linear chains of silver nanoparticles. Opt. Lett., 1998, 23(17): 133-1333.

[65] S. A. Maier, P. G. Kik, H. A. Atwater, et al. Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides. Nat. Mater., 2003, 2(4): 229-232.

[66] J. C. Weeber, A. Dereux, C. Girard, et al. Plasmon polaritons of metallic nanowires for controlling submicron propagation of light. Phys. Rev. B, 1999, 60(12): 9061-9068.

[67] S. I. Bozhevol-nyi, J. Erland, K. Leosson, et al. Waveguiding in surface plasmon po-lariton band gap structures. Phys. Rev. Lett., 2001, 86(14): 3008-3011.

[68] R. F. Oulton, V. J. Sorger, D. A. Genov, et al. A hybrid plas-monic waveguide for subwavelength confinement and long range propagation. Nat. Photonics, 2008, 2(8): 496-500.

[69] A. L. Pyayt, B. Wiley, Y. N. Xia, et al. Integration of photonic and silver nanowire plasmonic waveguides. Nat. Nanotechnol., 2008, 3(10): 660-665.

[70] S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, et al. Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature, 2006, 440(7083): 508-511.

[71] P. Nagpal, N. C. Lindquist, S. H. Oh, et al. Ultrasmooth patterned metals for plasmonics and metamaterials. Science, 2009, 325(5940): 594-597.

[72] H. J. Lezec, A. Degiron, E. Devaux, et al. Beaming light from a subwavelength aperture. Science, 2002, 297(5582): 820-822.

[73] G. Lerosey, D. F. P. Pile, P. Matheu, et al. Controlling the phase and amplitude of plasmon sources at a subwave-length scale. Nano Lett., 2009, 9(1): 327-331.

[74] A. F. Koenderink. Plasmon nanoparticle array waveguides for single photon and single plasmon sources. Nano Lett., 2009, 9(12): 4228-4233.

[75] R. F. Oul-ton, V. J. Sorger, T. Zentgraf, et al. Plasmon lasers at deep subwave-length scale. Nature, 2009, 461(7264): 629-632.

[76] Z. Y. Fang, Q. A. Peng, W. T. Song, et al. Plasmonic focusing in symmetry broken nanocorrals. Nano Lett., 2011, 11(2): 893-897.

[77] M. Achermann, K. L. Shuford, G. C. Schatz, et al. Near-field spectroscopy of surface plasmons in flat gold nanoparticles. Opt. Lett., 2007, 32(15): 2254-2256.

[78] S. Kim, J. H. Jin, Y. J. Kim, et al. High-harmonic generation by resonant plasmon field enhancement. Nature, 2008, 453(7196): 757-760.

[79] M. Schnell, A. Garcia-Etxarri, A. J. Huber, et al. Controlling the near-field oscillations of loaded plasmonic nano-antennas. Nat. Photonics, 2009, 3(4): 287-291.

[80] S. Kawata, Y. Inouye, P. Verma. Plasmonics for near-field nano-imaging and super-lensing. Nature Photonics, 2009, 3(7): 388-394.

[81] A. C. R. Pipino, R. P. VanDuyne, G. C. Schatz. Surface -enhanced second-harmonic diffraction: Experimental investigation of selective enhancement. Phys. Rev. B, 1996, 53(7): 4162-4169.

[82] S. M. Nie, S. R. Emery. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science, 1997, 275(5303): 1102-1106.

[83] Y. Fang, N. H. Seong, D. D. Dlott. Measurement of the distribution of site enhance-ments in surface-enhanced Raman scattering. Science, 2008, 321(5887): 388-392.

[84] A. Gopinath, S. V. Boriskina, W. R. Premasiri, et al. Plasmonic nanogalaxies: multiscale aperiodic arrays for sur-face-enhanced raman sensing. Nano Lett., 2009, 9(11): 3922-3929.

[85] Y. R. Fang, H. Wei, F. Hao, et al. Remote-excitation surface- enhanced raman scattering using propagating Ag nanowire plasmons. Nano Lett., 2009, 9(5): 2049-2053.

[86] C. Hermann, V. A. Kosobukin, G. Lampel, et al. Surface-enhanced magneto-optics in metallic multilayer films. Phys. Rev. B, 2001, 64(23), p. 235422.

[87] P. Zijlstra, J. W. M. Chon, M. Gu. Five-dimensional optical recording mediated by surface plasmons in gold nanorods. Nature, 2009, 459(7245): 410-413.

[88] D. O'Connor, A. V. Zayats. Data storage: the third plasmonic revolution. Nat. Nanotechnol., 2010, 5(7): 482-483.

[89] M. Westphalen, U. Kreibig, J. Rostalski, et al. Metal cluster enhanced organic solar cells. Sol. Energ. Mat. Sol. C, 2000, 61(1): 97-105.

[90] V. E. Ferry, L. A. Sweatlock, D. Pacifici, et al. Plasmonic nanostructure design for efficient light coupling into solar cells. Nano Lett., 2008, 8(12): 4391-4397.

[91] M. D. Brown, T. Suteewong, R. S. S. Kumar, et al. Plasmonic dye-sensitized solar cells using core-shell metal-insulator nanoparticles. Nano Lett., 2011,11(2): 438-445.

[92] F. Goettmann, A. Moores, C. Boissière, et al. A selec-tive chemical sensor based on the plasmonic response of phosphi-nine-stabilized gold nanoparticles hosted on periodically organized mesoporous silica thin layers. Small, 2005, 1(6): 636-639.

[93] J. Homola, S. S. Yee, G. Gauglitz. Surface plasmon resonance sensors: review. Sensors Actuat. B, 1999, 54(1-2): 3-15.

[94] S. J. Chen, F. C. Chien, G. Y. Lin, et al. Enhancement of the resolution of surface plas-mon resonance biosensors by control of the size and distribution of nanoparticles. Opt. Lett., 2004, 29(12): 1390-1392.

[95] J. N. Anker, W. P. Hall, O. Lyandres, et al. Biosensing with plasmonic nanosensors. Nat. Mater., 2008, 7(6): 442-453.

[96] A. V. Kabashin, P. Evans, S. Pastkovsky, et al. Plasmonic nanorod metamaterials for biosensing. Nat. Mater., 2009, 8(11): 867-871.

[97] E. Yablonovitch. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett., 1987, 58(20): 2059- 2062.

[98] S. John. Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett., 1987, 58(23): 2486- 2489.

[99] O. Painter, R. K. Lee, A. Scherer, et al. Two-dimensional photonic band-gap defect mode laser. Science, 1999, 284(5421): 1819-1821.

[100] S. Inoue1, Y. Aoyagi. Design and fabrica-tion of two-dimensional photonic crystals with predetermined nonlinear optical properties. Phys. Rev. Lett., 2005, 94(10), p. 103904.

[101] S. Y. Lin, J. G. Fleming, D. L. Hetherington, et al. A three-dimensional photonic crystal operating at infrared wavelengths. Nature, 1998, 394(6690): 251-253.

[102] E. Chow, S. Y. Lin, S. G. Johnson, et al. Three-dimensional control of light in a two-dimensional photonic crys-tal slab. Nature, 2000, 407(6807): 983-986.

[103] S. Noda, K. Tomoda, N. Yamamoto, et al. Full three-dimensional photonic bandgap crystals at near-infrared wavelengths. Science, 2000, 289(5479): 604-606.

[104] J. G. Fleming, S. Y. Lin, I. El-Kady, et al, All-metallic three-dimensional photonic crystals with a large infrared bandgap. Nature, 2002, 417(6884): 52-55.

[105] M. Campbell, D. N. Sharp, M. T. Harrison, et al. Fabrication of photonic crystals for the visible spectrum by holographic lithography. Nature, 2000, 404(6773): 53-56.

[106] H. Matsubara, S. Yoshimoto, H. Saito, et al. GaN photonic- crystal sur-face-emitting laser at blue-violet wavelengths. Science, 2008, 319(5862): 445-447.

[107] B. Corcoran, C. Monat, C. Grillet, et al. Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides. Nat. Photonics, 2009, 3(4): 206- 210.

[108] A. Yamilov, X. Wu, X. Liu, et al. Self-optimization of optical confinement in an ultraviolet photonic crystal slab laser. Phys. Rev. Lett., 2006, 96(8), p.083905.

[109] J. C. Knight. Photonic crystal fibres. Nature, 2003, 424(6950): 847-851.

[110] R. F. Cregan, B. J. Mangan, J. C. Knight, et al. Single-mode photonic band gap guidance of light in air. Science, 1999, 285(5433): 1537-1539.

[111] Y. Kurosaka, S. Iwahashi, Y. Liang, et al. On-chip beam-steering photonic-crystal lasers. Nat. Photonics, 2010, 4(7): 447-450.

[112] A. Tandaechanurat, S. Ishida, D. Guimard, et al. Lasing oscillation in a three-dimensional photonic crystal nanocavity with a complete bandgap. Nat. Photonics, 2011, 5(2): 91-94.

[113] S. Ogawa, M. Imada, S. Yoshimoto, et al. Control of light emission by 3D photonic crystals. Science, 2004, 305(5681): 227- 229.

[114] J. E. G. J. Wijnhoven, W. L. Vos. Prepara-tion of photonic crystals made of air spheres in titania. Science, 1998, 281(5378): 802-804.

[115] P. V. Braun, P. Wiltzius. Microporous materials: Electrochemically grown photonic crystals. Nature, 1999, 402(6762): 603-604.

[116] A. Blanco, E. Chomski, S. Grabtchak, et al. Large-scale synthesis of a silicon photonic crystal with a complete three- dimensional bandgap near 1.5 micrometres. Nature, 2000, 405(6785): 437-440.

[117] Y. A. Vlasov, X. Z. Bo, J. C. Sturm, et al. On-chip natural assembly of silicon photonic bandgap crystals. Nature, 2001, 414(6861): 289-293.

[118] J. G. Fleming, S. Y. Lin. Three-dimensional photonic crystal with a stop band from 1.35 to 1.95 mm. Opt. Lett., 1999, 24(1): 49-51.

[119] O. Toader, S. John. Proposed square spiral microfabrication architecture for large three-dimensional photonic band gap crystals. Science, 2001, 292(5519): 1133-1135.

[120] M. H. Qi, E. Lidorikis, P. T. Rakich, et al. A three-dimensional optical photonic crystal with designed point defects. Nature, 2004, 429(6991): 538-542.

[121] S. Takahashi, K. Suzuki, M. Okano, et al. Direct creation of three-dimensional photonic crystals by a top-down approach. Nat. Mater., 2009, 8(9): 721-725.

[122] K. Ishi-zaki, S. Noda. Manipulation of photons at the surface of three-dimensional photonic crystals. Nature, 2009, 460(7253): 367-370.

[123] G. R. Bird, M. Parrish. The wire grid as a near-infrared polarizer. J. Opt. Soc. Am., 1960, 50(9): 886-891.

[124] J. B. Young, H. A. Graham, E. W. Peterson. Wire grid infrared polarizer. Appl. Opt., 1965, 4(8): 1023-1026.

[125] H. Tamada, T. Doumuki, T. Yamaguchi, et al. Al wire-grid polarizer using the s-polarization resonance effect at the 0.8-m-wavelength band. Opt. Lett., 1997, 22(6): 419-421.

[126] T. Doumuki, H. Tamada. An aluminum-wire grid polarizer fabricated on a gallium-arsenide photodiode. Appl. Phys. Lett., 1997, 71(5): 686-688.

[127] J. J. Wang, W. Zhang, X. Deng, et al. High-performance nanowire-grid polarizers. Opt. Lett., 2005, 30(2): 195-197.

[128] Y. B. Lin, J. P. Guo, R. G. Lindquist. Demonstration of an ultra-wideband optical fiber inline polarizer with metal nano-grid on the fiber tip. Opt. Express, 2009, 17(20): 17849-17854.

[129] Y. T. Pang, G. W. Meng, L. D. Zhang, et al. Arrays of ordered Pb nanowires and their optical prop-erties for laminated polarizers. Adv. Funct. Mater., 2002, 12(10): 719-722.

[130] Y. T. Pang, G. W. Meng, Q. Fang, et al. Silver nanowire array infrared polarizers. Nanotechnology, 2003, 14(1): 20-24.

[131] J. X. Zhang, L. D. Zhang, C. H. Ye, et al. Polarization properties of or-dered copper nanowire microarrays embedded in anodic alumina mem-brane. Chem. Phys. Lett., 2004, 400(1-3): 158-162.

[132] J. X. Zhang, Y. G. Yan, L. D. Zhang, et al. Microarrays of silver nanowires embed-ded in anodic alumina membrane templates: size dependence of po-larization characteristics. Appl. Opt., 2006, 45(2): 297-304.

分享
Top