干湿交替变化对土壤中磷形态影响及环境意义
Influence of Alternative Drying-Wetting on Phosphorus Fractions in Soils with Different Organic Matter Content and Environmental Implications

作者: 魏琳琳 * , 孙军娜 :中国科学院烟台海岸带研究所,烟台; 徐刚 :中国科学院烟台海岸带研究所,烟台;山东省黄河三角洲生态环境重点实验室(滨州学院),滨州; 谢文军 :山东省黄河三角洲生态环境重点实验室(滨州学院),滨州; 邵宏波 :中国科学院烟台海岸带研究所,烟台;青岛科技大学生命科学研究所,青岛;

关键词: 磷分级干湿交替全球变化有机土贫瘠土Phosphorus Fractionation Drying-Wetting Climate Change Organic Soil Sterile Soil

摘要: 在全球变化的背景下,干湿交替对于土壤肥力水平和水体环境质量,具有重要的研究意义。本研究采用修正Hedley土壤磷素分级方法,研究了干湿交替对不同有机质含量土壤磷形态的影响。研究结果表明,干湿交替对土壤总磷的影响不大,变异系数C.V% < 10%。干湿交替极大的改变了土壤中磷形态的分布:显著提高了土壤有效磷(尤其是树脂磷)和有机磷(NaHCO3-Po,NaOH-Po和Con.HCl-Po)的含量,同时降低了土壤中NaOH-Pi和闭蓄态磷的含量。在干湿交替条件下,有机土中树脂磷提高了121%,而贫瘠土中树脂磷仅提高了31%,这说明干湿交替对有机质含量高的土壤活性磷影响更为显著。该研究表明干湿交替促进了土壤中磷由闭蓄态磷向活性磷和有机磷的转化。在全球变化的背景下,干湿交替可以提高土壤中有效磷含量,促进作物的生长;但当有降水或灌溉时,也可能加剧土壤中磷素的流失,从而引发近海富营养化事件,对于近海环境质量和区域生态安全可能构成威胁。

Abstract: In the context of global change, it is of significance to study the effect of alternative drying-wetting on the soil fertility level and the environmental quality of water body. In this study, soil P was fractionated by using a modified Hedley fractionation method to examine the effect of alternative drying-wetting on phosphorus fractions in soils with different organic matter content. The results displayed no significant difference of total phosphorus between the two treatments because the coefficient of variance was less than 10%. However, there is a significant change in the distribution of soil phosphorus fractions: increase the content of labile-P (especially resin-P) and organic-P (NaHCO3-Po, NaOH-Po and Con.Hcl-Po) while decreasing the content of NaOH-pi and occlude-P. Under the alternative drying and wetting condition, resin-P increased by 121% in the organic soil, while only increasing by 31% in the sterile soil, which indicates a significant effect of alternative of drying and wetting on labile-P in soils with high organic matter content. The study indicates that alternative drying and wetting seemed to drive the phosphorus transformation from the occlude-P to labile-P and organic-P. In the context of global change, alternative drying and wetting can increase the content of labile P in the soil to improve crop growth. However, when there is rainfall or irrigation, it may aggravate the loss of soil phosphorus, which will induce the offshore eutrophication and possibly threaten the coastal environmental quality and regional ecological security.

文章引用: 魏琳琳 , 徐刚 , 孙军娜 , 谢文军 , 邵宏波 (2012) 干湿交替变化对土壤中磷形态影响及环境意义。 环境保护前沿, 2, 15-19. doi: 10.12677/aep.2012.22003

参考文献

[1] [1] G. M. Filippelli. The global phosphorus cycle: Past, present, and future. Elements, 2008, 4(2): 89-95.

[2] B. L. Turner, P. M. Haygarth. Biogeochemistry: Phosphorus solubilization in re-wetted soils. Nature, 2001, 411(6835): 258.

[3] D. Styles, C. Coxon. Laboratory drying of organic-matter rich soils: Phos-phorus solubility effects, influence of soil characteristics, and consequences for environmental interpretation. Geoderma, 2006, 136(1-2): 120-135.

[4] M. S. A. Blackwell, P. C. Brookes, N. de la Fuente-Martinez, et al. Effects of soil drying and rate of re-wetting on concentrations and forms of phosphorus in leachate. Biology and Fertility of Soils, 2009, 45(6): 635-643.

[5] M. S. A. Blackwell, P. C. Brookes, N. de la Fuente-Martinez, et al. Phosphorus solubilization and potential transfer to surface waters from the soil microbial biomass fol-lowing drying-rewet- ting and freezing-thawing. Advances in Agronomy, 2010, 106: 1-35.

[6] K. Pettersson, G. N. George, P. Ges, et al. The impact of the changing climate on the supply and re-cycling of phosphorus. The Impact of Climate Change on European Lakes, 2010, 4: 121-137.

[7] 姜德娟, 李志, 王昆. 1961~2008年山东省极端温度事件时空特征分析[J]. 科技导报, 2011, 29(1): 30-35.

[8] M. J. Hedley, J. W. B. Chauhan. Changes in inorganic and organic soil phosphorus fractions in-duced by cultivation practices and by laboratory incubations. Soil Science Society of America Journal, 1982, 46(5): 970.

[9] 秦胜金, 刘景双, 王国平等. 三江平原湿地土壤磷形态转化动态[J]. 生态学报, 2007, 27(9): 3844-3851.

[10] H. Tiessen, J. O. Moir. Characterization of available P by sequential extraction. Soil Sampling and Methods of Analysis, 1993, 824: 75-87.

[11] A. F. Cross, W. H. Schlesinger. A literature review and evaluation of the Hedley fractionation: Applications to the biogeochemical cycle of soil phosphorus in natural ecosystems. Geoderma, 1995, 64(3-4): 197-214.

[12] B. L. Turner, P. M. Haygarth. Changes in bicarbonate-extract- able inorganic and organic phosphorus by drying pasture soils. Soil Science Society of America Journal, 2003, 67(1): 344-350.

[13] 朴河春, 刘广深. 干湿交替和冻融作用对土壤肥力和生态环境的影响[J]. 生态学杂志, 1995, 14(6): 29-34.

[14] H. F. Birch, M. T. Friend. Resistance of humus to decomposition. Nature, 1961, 191: 81-96.

[15] 李晨华, 唐立松, 李彦. 干湿处理对灰漠土土壤理化性质及微生物活性的影响[J]. 土壤学报, 2007, 44(2): 364-367.

[16] 王国平. 湿地磷的生物地球化学特性[J]. 水土保持学报, 2004, 18(4): 193-199.

[17] E. Lichtfouse. Sociology, organic farming, climate change and soil science. New York: Springer, 2010.

[18] R. B. Jackson, H. J. Schenk, E. G. Jobbágy, et al. Belowground consequences of vegetation change and their treatment in models. Ecological Applications, 2000, 10(2): 470-483.

[19] M. Hejcman, M. Klaudisov, J. Schellberg, et al. The Rengen grassland experiment: Plant species composition after 64 years of fertilizer application. Agriculture, Ecosystems & Environment, 2007, 122(2): 259-266.

[20] 刘方, 黄昌勇, 何腾兵. 黄壤旱坡地退耕还林还草对减少土壤磷流失的作用[J]. 水土保持学报, 2002, 16(3): 20-23.

[21] J. G. Kerr, M. Burford, J. Olley, et al. The effects of drying on phosphorus sorption and speciation in subtropical river sediment. Marine and Freshwater Research, 2010, 61(8): 928-935.

[22] H. B. Shao, L. Y. Chu, G. Xu, et al. Understanding molecular mechanisms for improving phytoremediation of heavy metal- contaminated soils. Critical Review in Biotechnology, 2010, 30: 23-30.

[23] W. Y. Shi, H. B. Shao, H. Li, et al. Progress in the remediation of hazardous heavy metal-polluted soils by natural zeolite. Journal of Haz-ardous Materials, 2009, 170: 1-6.

[24] G. Wu, H. B. Kang, H. B. Shao, et al. Critical review on the bio-removal of hazardous heavy metals from contaminated soils: Issues, progress, eco-environmental concerns and opportunities. Journal of Haz-ardous Materials, 2010, 174: 1-8.

[25] J. H. Bai, R. Xiao, B. S. Cui, et al. Assessment of heavy metal pollution in wetland soils from the young and old reclaimed regions in the Pearl River Es-tuary, South China. Environmental Pollution, 2011, 159(3): 817-824.

[26] J. H. Bai, H. F. Gao, W. Deng, et al. Nitrification potential of marsh soils from two natural saline-alkaline wet-lands. Biology and Fertility Soils, 2010, 46(5): 525-529.

[27] J. H. Bai, H. Ouyang, R. Xiao, et al. Spatial variability of soil car-bon, nitrogen, and phosphorous content and storage in an alpine wetland in the Qinghai-Tibet Pateau, China. Australian Journal of Soil Research, 2010, 48(8): 730-736.

[28] Editorial. 90 years of journal of plant nutrition and soil science (JPNSS). Journal of Plant Nutrition and Soil Science, 2012, 175: 3.

[29] K. K. Ingrid, G. Georg, K. Markus, et al. Organo-mineral associations in temperate soils: Integrating biology, mineralogy, and organic matter chemistry. Journal of Plant Nutrition and Soil Science, 2008, 171: 61-82.

[30] Z. J. Chen, X. L. Zhang, M. X. Cui, et al. Tree-ring based precipitation reconstruction for the forest-steppe ecotone in northern Inner Mongolia, China and its linkages to the Pacific Ocean variabil. Global and Planetary Change, 2012, 86-87: 45-56.

分享
Top