含权双调和椭圆型问题的特征值不等式
Eigenvalue Inequality for a Weighted Biharmonic Elliptic Problem

作者: 熊辉 :东莞理工学院数学教研室;

关键词: 双调和奇性特征值不等式Biharmonic Singularity Eigenvalue Inequality

摘要: 本文主要讨论了一类含权的双调和椭圆型Dirichlet边值问题的第一和第二特征值之间的关系,通过一些变分技巧得到了相关的不等式,并在低维数空间给出了一些估计。

Abstract: In this paper, we study the relation between the first and the second eigenvalue of a weighted biharmonic elliptic problem with Dirichlet boundary. By some variational technique we obtain the corresponding inequality, and some evaluations are put forward in low dimension space.

文章引用: 熊辉 (2012) 含权双调和椭圆型问题的特征值不等式。 理论数学, 2, 73-77. doi: 10.12677/pm.2012.22012

参考文献

[1] L. E. Payne, G. Polya and H. F. Weinberger. On the ratio of consecutive eigenvalues. Journal of Math and Physics, 1956, 35: 289-298.

[2] G. N. Hile, M. H. Protter. Inequalities for eigenvalues of the Laplacian. Indiana University Mathematic Journal, 1980, 29: 523-538.

[3] H. C. Yang. Estimates of the difference between consecutive eigenvalues. International Centre for Theoretical Physics, 1995, (3): 47-63.

[4] E. M. Harrell II, J. Stubbe. On trace identities and universal eigenvalue estimates for some partial differential operators. Transactions of the American Mathematical Society, 1997, 349(5): 1797-1809.

[5] G. N. Hile, R. Z. Yeh. Inequalities for eigenvalues of the Biharmonic operator. Pacific Journal of Mathematics, 1984, 112(1): 115-133.

[6] M. S. Ashbaugh, L. Hermi. A unified approach to universal inequalities for eigenvalues of elliptic operators. Pacific Journal of Mathematics, 2004, 217(2): 201-219.

[7] P. Li. Eigenvalue estimates on homogeneous manifolds. Comment Mathematic Helvetic, 1980, 55(1): 347-363.

[8] 屈长征, 崔尚斌. 复Monge-Ampere方程的特征值问题[J]. 纯粹数学与应用数学, 1995, 11(2): 37-40.

分享
Top