带有非自治项的非线性Schrödinger方程的基态解的存在性
Ground States of Nonlinear Schrödinger Equation with Non-Autonomous Nonlinearity

作者: 朱红波 :广东工业大学应用数学学院;

关键词: 非线性Schrödinger方程基态解集中紧致原理Nonlinear Schrödinger Equation Ground State Solutions Concentration Compactness

摘要: 本文考虑如下形式的非线性Schrödinger方程 (P)。利用有界区域逼近和集中紧致原理,当位势函数不恒等于常数,非线性项 不恒等于 ,本文证明了方程(P)存在最低能量解。

Abstract: In this paper, we are concerned with the following nonlinear Schrödinger equation

Abstract: (P). By using the bounded domain approximate scheme and concen-tration compactness principle, we prove the existence of a ground state solution of (P) on the Nehari manifold when constant and .

文章引用: 朱红波 (2012) 带有非自治项的非线性Schrödinger方程的基态解的存在性。 理论数学, 2, 62-72. doi: 10.12677/pm.2012.22011

参考文献

[1] L. Jeanjean. On the existence of bounded Palais-Smale sequence and application to a Landesman-Lazer-type problem set on RN. Proceedings of the Royal Society of Edinburgh, 1999, 129(4): 787-809.

[2] L. Jeanjean, K, Tanaka. A positive solution for an asymptotically linear elliptic problem on RN autonomous at infinity. ESAIM Control Optimisation and Calcules of Variations, 2002, 7: 597-614.

[3] L. Jeanjean, K. Tanaka. A positive solution for a linear Schrödinger equation on RN. Indiana University Mathematics Journal, 2005, 54(2): 443-464.

[4] C. Y. Liu, Z. P. Wang and H. S. Zhou. Asymptotically of nonlinear Schrödinger equation with potential vanishing at infinity. Journal of Differential Equations, 2008, 245(1): 201-222.

[5] G. Li, H. S. Zhou. The existence of a positive solution to asymptotically linear scalar field equation. Proceedings of the Royal Societyof Edinburgh, 2000, 130(1): 81-105.

[6] H. B. Zhu. A note on asymptotically linear Schrödinger equation on RN. Advanced Nonlinear Studies, 2009, 9(1): 81-94.

[7] A. Ambrosetti, P. H. Rabinowitz. Dual variational methods in critical point theory and application. Journal of Functional Analysis, 1973, 14(4): 349-381.

[8] Z. L. Liu, Z. Q. Wang. On the Ambrosetti-Rabinowitz superlinear condition. Advanced Nonlinear Studies, 2004, 4(4): 561-572.

[9] Y. Q. Li, Z. Q. Wang and J. Zeng. Ground states of nonlinear Schrödinger equations with potentials. Annales de I’Institut Henri Poincare, 2006, 23(6): 829-837.

[10] M. Willem. Minimax theorems. Boston: Birkhauser, 1996.

[11] X. P. Zhu, D. M. Cao. The concentration-compactness principle in nonlinear elliptic equations. Acta Mathematica Scientia, 1989, 9(3): 307-323.

[12] P. L. Lions. The concentration-compactness principle in the calculus of variation. The locally compact case, Part I and II. Annales de I’Institut Henri Poincare, 1984, 1(4): 109-145, 223-283.

分享
Top