光滑函数的退化临界点的识别
The Recognition of Degenerate Critical Points of Smooth Functions

作者: 王伟 , 李养成 :;

关键词: 识别问题内蕴理想高阶项Recognition Problems Intrinsic Ideals Higher-Order Terms

摘要: 本文应用分歧理论所发展的一些方法与技巧,研究位于子流形上的光滑函数的退化临界点的识别问题,建立了RH -等价理论,包括两函数芽RH -等价的判别定理,识别问题高阶项的精确表达形式及低阶项的刻画等。

Abstract: By some methods and techniques developed from bifurcation theory, this paper investigates the recognition problem of degenerate critical points of smooth functions. Each one of such critical points lies on a sub-manifold included in domain of function. The so-called RH -equivalence theory is established, including a theorem to insureRH -equivalence between two function-germs, an exact formula for higher-order terms, a characterization of low-order terms, and so on.

文章引用: 王伟 , 李养成 (2012) 光滑函数的退化临界点的识别。 理论数学, 2, 53-61. doi: 10.12677/pm.2012.22010

参考文献

[1] V. I. Arnold. Critical points of functions on a manifold with boundary, the simple lie groups Bk,Ck and F4 and singularities of evolutes. Russian Mathematical Surveys, 1978, 33(5): 99-116.

[2] M. Golubitsky, D. G. Schaeffer. A theory for imperfect bifurcation via singularity theory. Communications on Pure and Applied Mathematics, 1979, 32(1): 21-98.

[3] M. Golubitsky, D. G. Schaeffer. Imperfect bifurcation in the presence of symmetry. Communications in Mathematical Physics, 1979, 67(3): 205-232.

[4] M. Golubitsky, D. G. Schaeffer. Singularities and groups in bifurcation theory. New York: Springer-Verlag, 1985.

[5] 李养成. 光滑映射的奇点理论[M]. 北京: 科学出版社, 2002.

[6] O. Zariski, P. Samuel. Commutative algebra. Princeton: Van Nostrand, 1960.

[7] 李养成, 郭瑞芝, 崔登兰. 微分流形基础[M]. 北京: 科学出版社, 2011.

分享
Top