外场中多势垒结构的电导的计算
Calculation of Conductance for Multi-Barrier Structure in a Constant Electric Field

作者: 骆敏 , 杨双波 :南京师范大学物理科学与技术学院;

关键词: 多势垒结构电导Multi-Barrier Structure Conductance

摘要:

本文对外电场中一维多势垒结构推导了电流密度表达式,进而得出单位面积的电导。在半导体材料(GaAs/GaxAl1–xAs)的参数范围内,通过数值计算进一步研究了一维多势垒结构的单位面积电导与电压特性曲线及温度和势垒宽度对电导–电压曲线的影响。

Abstract: In this paper, the current density expression and the unit area conductance for one-dimensional multi-barrier structure in the presence of a constant electric field were derived. For a selected range of parameters of semiconductor materials (GaAs/GaxAl1–xAs), through the numerical calculation the characteristics of unit area conductance versus the applied voltage to the structure was studied. This paper also studied how the characteristics of the conductance-voltage changes with the temperature and the width of the barrier.

文章引用: 骆敏 , 杨双波 (2012) 外场中多势垒结构的电导的计算。 应用物理, 2, 61-66. doi: 10.12677/app.2012.22010

参考文献

[1] L. Esaki, R. Tsu. Superlattice and negative differential conductivity in semiconductors. IBM Journal of Research and Development, 1970, 14(1): 61-65.

[2] 黄和鸾. 半导体超晶格——材料与应用[M]. 沈阳: 辽宁大学出版社, 1992.

[3] N. G. Sun, D. Q. Yuan and W. D. Deering. Electric-field-induced changes in the transmission spectrum of a superlattice. Physical Review B, 1995, 51(7): 4641-4644.

[4] L. L. Chang, L. Esaki and R. Tsu. Resonant tunneling in semi- conductor double barriers. Applied Physics Letters, 1974, 24(12): 593-595.

[5] M. J. Kelly. Tunnelling in quantum-well structures. Electronics Letters, 1984, 20(19): 771-772.

[6] M. O. Vasell, J. Lee and H. F. Lockwood. Multibarrier tunneling in Ga1–xAlx/GaAs heterostructures. Journal of Applied Physics, 1983, 54(9): 5206-5213.

[7] C. Rauch, G. Strasser, K. Unterrainer, W. Boxleitner, E. Gornik and A. Wacker. Transition between coherent and incoherent Electron Transport in Ga/GaAlAs superlattices. Physical Review Letters, 1998, 81(16): 3495-3498.

[8] F. Borondo, J. Sanchez-Dehesa. Electronic structure of a GaAs quantum well in an electric field. Physical Review B, 1986, 33(12): 8758-8761.

[9] E. J. Austin, M. Jaros. Electronic structure of an isolated GaAs- GaA1As quantum well in a strong electric field. Physical Review B, 1985, 31(8): 5569-5572.

[10] B. Jogai, K. L. Wang. Interband optical transitions in GaAs- Ga1–xAlxAs superlattices in an applied electric field. Physical Review B, 1987, 35(2): 653-659.

[11] M. Nakayama, M. Ando, I. Tanaka, et al. Electric-field effects on above-barrier states in a GaAs/AlxGa1–xAs superlattice. Physical Review B, 1995, 51(7): 4236-4241.

[12] D. A. B. Miller, D. S. Chemla, T. C. Damen, et al. Electric field dependence of optical absorption near the band gap of quantum- well structures. Physical Review B, 1985, 32(2): 1043-1060.

[13] R. Biswas, S. Mukhopadhyay and C. Sinha. Biased driven resonant tunneling through a double barrier graphene based structure. Physics E, 2010, 42(5): 1781-1786.

[14] T. Noda, N. Koguchi. Current-voltage characteristics in double- barrier resonant tunneling diodes with embedded GaAs quantum rings. Physics E, 2006, 32(1-2): 550-553.

[15] G. Sun, Y. J. Ding, G. Y. Liu, et al. Photoluminescence emission in deep ultraviolet region from GaN/AlN asymmetric-coupled quantum wells. Applied Physical Letters, 2010, 97(2): Article ID 021901-1-021904-3.

[16] 夏建白, 朱邦芬. 半导体超晶格物理[M]. 上海: 上海科学技术出版社, 1995.

[17] A. Rogalski. Quantum well photoconductors in infrared detector technology. Journal of Applied Physics, 2003, 93(8): 4355-4390.

[18] T. H. Wood, C. A. Burrus, D. A. B. Miller, et al. Hight-speed optical modulation with GaAs/GaAlAs quantum wells in a p-i-n diode structure. Applied Physical Letters, 1984, 44(1): 16-18.

[19] D. A. B. Miller, D. S. Chemla, T. C. Damen, et al. Novel hybrid optically bistable switch: The quantum well self-electro-optic effect device. Applied Physical Letters, 1984, 45(1): 13-15.

[20] R. Tsu, L. Esaki. Tunneling in a finite superlattice. Applied Physical Letters, 1973, 22(11): 562-564.

[21] K. Mukherjee, N. R. Das. Tunneling current calculations for nonuniform and asymmetric multiple quantum well structures. Journal of Applied Physics, 2011, 109(5): Article ID 053708- 1-053708-6.

[22] Y. Ando, T. Itoh. Calculation of transmission tunneling current across arbitrary potential barriers. Journal of Applied Physics, 1987, 61(4): 1497-1502.

[23] B. Jonsson, S. T. Eng. Solving the Schrödinger equation in arbitrary quantum-well potential profiles using the transfer matrix method. IEEE Journal of Quantum Electronics, 1990, 26(11): 2025-2035.

[24] R. Gilmore. Elementary quantum mechanics in one dimension. Baltimore: The Johns Hopkins University Press, 2004.

分享
Top