SAPO-18分子筛上二甲醚制低碳烯烃的催化性能研究
Catalytic Performances of Dimethyl Ether to Olefins over SAPO-18 Molecular Sieves

作者: 徐淑慧 , 徐照龙 , 于建强 :青岛大学纤维新材料与现代纺织重点实验室,青岛大学化学化工与环境学院; 苏安银 , 郭朝光 , 张晓龙 , 李全发 :久泰能源集团科研中心;

关键词: 二甲醚低碳烯烃磷酸硅铝分子筛稀土催化Dimethyl Ether Low-Carbon Olefins Silicoaluminophosphate Rare Earth Catalysis

摘要: 在固定床反应器上考察了SAPO-18和金属改性的SAPO-18分子筛催化剂上二甲醚制低碳烯烃反应的催化性能。结果表明,金属改性的SAPO-18分子筛结晶度较高。催化反应的最佳反应温度为400℃,最佳空速为DME/N2为10/100 ml/min。在该反应条件下,SAPO-18和RE-SAPO-18上丙烯的选择性总是高于乙烯。金属镍和稀土镧改性的分子筛Ni-SAPO-18和La-SAPO-18的催化性能最好,而稀土铈的添加却降低了SAPO-18的催化活性。在最佳反应条件下,Y-SAPO-18催化剂上DME的转化率达到99.3%,乙烯的选择性达到26.8%,丙烯的选择性为35.0%。

Abstract: The catalytic performance of pure-phase and rare-earth modified silicoaluminophosphate molecular sieves with AEI structures were investigated by dimethyl ether to olefins (DTO) reactions. It demonstrated that the crystallinity of metal modified SAPO-18 molecular sieves is high. For the catalytic reaction, the optimum space velocity is DME/N2 = 10/100 ml/min. Under these conditions, the selectivity toward propylene is always much higher than that of ethylene in both SAPO-18 and RE-SAPO-18 used as catalysts. Moreover, the modification of SAPO-18 by Ni and La improved the catalytic activity, while the modification by Ce has a reverse effect. The catalytic activity and stability were signify- cantly enhanced especially for RE-SAPO-18. The medium acid strength, which was attained in SAPO-18 catalyst, can catalyze DTO reaction more efficiently for improving catalyst lifetime and product selectivity. At the optimum condi- tions, Y-SAPO-18 catalyst gave a DME conversion of 99.3%, together with selectivity to ethylene of 26.8% and pro- pene of 35.0%.

文章引用: 徐淑慧 , 苏安银 , 徐照龙 , 郭朝光 , 张晓龙 , 李全发 , 于建强 (2012) SAPO-18分子筛上二甲醚制低碳烯烃的催化性能研究。 化学工程与技术, 2, 48-52. doi: 10.12677/hjcet.2012.22009

参考文献

[1] 任诚. 非石油路线制取低碳烯烃的生产技术及产业前景[J]. 精细化工中间体, 2007, 37(5): 6-9.

[2] R. C. Wei, C. Y. Li, C. H. Yang, et al. Effects of ammonium exchange and Si/Al ratio on the conversion of methanol to pro- pylene over a novel and large partical size ZSM-5. Journal of Natural Gas Chemistry, 2011, 20(3): 261-265.

[3] Y. Hirota, K. Murata, M. Miyamoto, et al. Light olefins synthe- sis from methanol and dimethylether over SAPO-34 nanocrystals. Catalysis Letters, 2010, 140(1-2): 22-26.

[4] J. Q. Chen, A. Bozzano, B. Glover, et al. Recent advancements in ethylene and propylene production using the UOP/Hydro MTO process. Catalysis Today, 2005, 106(1-4): 103-107.

[5] Y. J. Lee, S. C. Baek and K. W. Jun. Methanol conversion on SAPO-34 catalysts prepared by mixed template method. Applied Catalysis A, 2007, 329(2): 130-136.

[6] J. S. Chen, J. M Thomas and P. A. Wright. Silicoaluminophos- phate number eighteen (SAPO-18): A new microporous solid acid catalyst. Catalysis Letters, 1994, 28(2-4): 241-248.

[7] D. L. Obrzut, P. M. Adekkanattu, J. Thundimadathil, et al. Re- ducing methane formation in methanol to olefins reaction on metal impregnated SAPO-34 molecular sieve. Reaction Kinetics and Catalysis Letters, 2003, 80(1): 113-121.

[8] 王红霞, 李建伟, 李英霞等. SAPO-34和Me APSO-34分子筛的合成及催化性能[J]. 北京化工大学学报(自然科学版), 2010, 37(6): 50-54.

[9] 刘广宇, 田鹏, 刘中民. 用于甲醇制烯烃反应的 SAPO-34分子筛改性研究[J]. 化学进展, 2010, 22(8): 1531-1537.

[10] 李红彬, 吕金钊, 王一婧等. 碱土金属改性SAPO-34催化甲醇制烯烃[J]. 催化学报, 2009, 30(6): 509-513.

[11] 张飞, 姜健准, 张明森等. 甲醇制低碳烯烃催化剂的制备与改性[J]. 石油化工, 2006, 35(10): 919-923.

[12] 徐如人, 庞文琴, 于吉红等. 分子筛与多孔材料化学[M]. 北京: 科学出版社, 2004: 54.

[13] J. Z. Lu, X. P. Wang and H. B. Li. Catalystic conversion of methanol to olefins over rare earth (La, Y) modified SAPO-34. Reaction Kinetics and Catalysis Letters, 2009, 97(2): 255-261.

分享
Top