分子生物技术在污泥微生物群落多样性研究中的应用—污泥微生物群落研究
Application in Activated Sludge Microbial Community Diversity Used Molecular Biological Technology—Study of Sludge Microbial Community Diversity

作者: 孙连鹏 , 崔语涵 , 黄剑明 , 叶挺进 , 程毅 :;

关键词: 活性污泥分子生物技术微生物群落多样性Activated Sludge Molecular Biological Technology Biodiversity of Microbial Communities

摘要: 以活性污泥法为主体的生化好氧处理工艺是目前应用最广泛的污水生物处理技术。随着分子生物学技术的发展,人们对活性污泥微生物菌群的复杂性和多样性的认识逐步深入,大量依靠传统方法未能检测出,但却在活性污泥中起关键作用的微生物逐渐被发现。这些现代分子生物技术以FISH技术、DGGE/TGGE技术、T-RFLP技术、RAPD技术、AFLP技术、PCR-SSCP技术等为代表。通过对这些技术的综述分析,揭示其技术特点和应用发展方向,为探索研究活性污泥的微生物群落多样性提供指导意义。

Abstract: Biochemical aerobic treatment technique based on activated sludge process is the most widely applied biological wastewater treatment technique. With the development of modern molecular biological technology, it enhances our knowledge about the complexity and the biodiversity of activated sludge microbial communities. Numerous key microorganisms in activated sludge which were not detected by traditional cultivation methods, were disclosed by mod-ern biological techniques. These modern molecular biological techniques are represented by FISH, DGGE/TGGE, T-RFLP, RAPD, AFLP, PCR-SSCP and so on. It reveals the characteristics and development of the modern techniques, and it provides guidance for study of activated sludge microbial community diversity.

文章引用: 孙连鹏 , 崔语涵 , 黄剑明 , 叶挺进 , 程毅 (2012) 分子生物技术在污泥微生物群落多样性研究中的应用—污泥微生物群落研究。 生物过程, 2, 13-20. doi: 10.12677/bp.2012.21003

参考文献

[1] S. J. Giovannoni, E. F. Delong, G. J. Olsen, et al. Phylogenetic group specific oligodeocy nucleotide probes for identification of single microbial cells. Journal of Bacteriology, 1988, 170: 720- 726.

[2] E. F. Delong, G. S. Wickham and N. R. Pace. Phylongenetic stains: Ribosomal RNA based probes for the identification of sin- gle microbial cells. Science, 1989, 65: 5554-5563.

[3] G. J. Olsen, D. J. Lane, S. J. Giovannoni, et al. Microbial ecology and evolution: A ribosomal RNA approach. Annual Review Microbiology, 1986, 40(1): 337-365.

[4] 李冰冰, 肖波, 李蓓. FISH技术及其在环境微生物监测中的应用[J]. 生物技术, 2007, 18(5): 94-97.

[5] M. T. Wong, T. Mino, R. J. Seviourc, et al. In situ identification and characterization of the microbial community structure of full-scale enhanced biological phosphorous removal plants in Japan. Water Research, 2005, 39(13): 2901-2914.

[6] A. Oehmena, M. T. Vivesa, H. B. Lu, et al. The effect of pH on the competition between polyphosphate accumulating organisms and glycogen-accumulating organisms. Water Research, 2005, 39(15): 3727-3737.

[7] 呼庆, 齐鸿雁, 张洪勋. 荧光原位杂交技术及其在微生物生态学中的应用[J]. 生态学报, 2004, 24(5): 1048-1054.

[8] A. Cuadrado, P. Rubio, E. Ferrer, et al. Sequential combinations of C-banding and in situ hybridization and their use in the detection of interspecific introgressions into wheat. Euphytica, 1996, 89(1): 107-112.

[9] N. P. Carter, M. A. Ferguson-Smith, M. T. Perryman, et al. Reverse chromosome painting: A method for the rapid analysis of aberrant chromosomes in clinical cytogenetics. Journal of Medical Genetics, 1992, 29(5): 299-307.

[10] N. P. Carter. Cytogenetic analysis by chromosome painting. Cy- tometry, 1994, 18(1): 2-10.

[11] H. Q. Heng, J. Squire and L.-C. Tsui. High-resolution mapping of mammalian genes by in situ hybridization to free chromatin. Proceeding of National Academy of Science USA, 1992, 89(20): 9509-9513.

[12] P. Komminoth, M. Werner. Target and signal amplification: Ap- proaches to increase the sensitivity of in situ hybridization. Histochemistry and Cell Biology, 1997, 108(4-5): 325-333.

[13] K. Zwrglmaier, W. Ludwing and K. H. Schleifer. Recognition of individual genes in a single bacterial cell by fluorescence in situ hybridization-RING-FISH. Molecular Microbiology, 2004, 51(1): 89-96.

[14] P. H. Nielsen, K. Andreasen, M. Wagner, et al. Variability of type 021N in activated sludge as determined by in situ substrate uptake pattern and in situ hybridization with fluorescent rRNA targeted probes. Water Science and Technology, 1998, 37(4-5): 423-440.

[15] J. Ahn, T. Daidou, S. Tsuneda, et al. Characterization of denitrifying phosphate accumulating organisms cultivated under different electron acceptor conditions using polymerase chain reaction-denaturing gradient gel electrophoresis assay. Water Research, 2002, 36(2): 403- 412.

[16] S. G. Fischer, L. S. Lerman. DNA fragments differing by single base-pair substitutions are separated in denaturing gradient gels: Correspondence with melting theory. Proceeding of National Academy of Science USA, 1983, 80(6): 1579-1583.

[17] R. M. Myers, S. G. Fischer, L. S. Lerman, et al. Nearly all single base substitutions in DNA fragments joined to a GC-clamp can be detected by denaturing gradient gel electrophoresis. Nucleic Acids Research, 1985, 13: 3131-3145.

[18] G. Muyzer, E. C. Waal and A. G. Uitterlinden. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reactionamplified genes encoding for 16S rRNA. Applied and Environmental Microbiology, 1993, 59: 695-700.

[19] C. W. Bachem, et al. Visualization of differential gene expression using a novel method of RNA fingerprinting based on AFLP: Analysis of gene expression during potato tuber development. Plant Journal, 1996, 9(5): 745-753.

[20] M. Orita, H. Iwahana, H. Kanazawa, et al. Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms. Proceeding of National Academy of Science USA, 1989, 86(8): 2766-2770.

[21] D. H. Lee, Y. G. Zo and S. J. Kim. Nonradioactive method to study genetic profiles of natural bacterial communities by PCR- single-strand-conformation polymorphism. Applied and Environmental Microbiology, 1996, 62(9): 3112-3120.

[22] C. L. Zhang, Y. H. Wang, H. Chen, et al. Enhance the efficiency of single-strand conformation polymorphism analysis by short polyacrylamide gel and modified silver staining. Analytical Biochemistry, 2007, 365(2): 86-287.

[23] 杨志惠, 周斌, 贾静等. PCR-SSCP分析参数的研究[J]. 沪州医学院学报, 2005, 28(5): 391-393.

[24] M. Orita, H. Iwahana. Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms. Proceeding of National Academy of Science USA, 1989, 86: 2766-2770.

[25] 汤贤春, 路健, 李学英. PCR-SSCP技术在基因多态分析中的应用[J]. 中国西部科技, 2010, 9(6): 55-56.

[26] 王岩, 沈锡权, 吴祖芳等. PCR-SSCP技术在微生物群落多态性分析中的应用进展[J]. 生物技术, 2009, 13(9): 84-87.

[27] M. J. Ferris, G. Muyzer and D. M. Ward. Denaturing gradient gel electrophoresis profiles of 16S rRNA defines populations inhabiting a hotspring microbial mat community. Applied and Environmental Microbiology, 1992, 62: 340-346.

[28] 鲍立新, 李建政, 赵焱, 郑国臣. 厌氧活性污泥微生物群落的SSCP分析条件优化[J]. 科技导报, 2008, 26(2): 28-32.

[29] T. Vallaeys, E. Topp, G. Muyzer, et al. Evaluation of denaturing gradient gel electrophoresis in the detection of 16S rDNA sequence variation in rhizobia and methanotrophs. FEMS Microbiology Ecology, 1997, 24: 279-285.

[30] H. Sekiguchi, N. Tomioka, T. Nakahara, et al. A single band does not always represent single bacterial strains in denaturing gradient gel electrophoresis analysis. Biotechnology Letters, 2001, 23: 1205-1208.

[31] 刘新春等. PCR-DGGE 法用于活性污泥系统中微生物群落变化的解析[J]. 生态学报, 2005, 25(4): 842-847.

[32] 李黎, 张松贺, 王超. 污水处理厂活性污泥细菌多样性研究[URL], 2011. http://www.paper.edu.cn/index.php/default/releasepaper/content/201101-1046

[33] A. Samantha, L. Morris and S. Radajewski. Identification of the function ally active methanotroph population in apeat soil microcosm by stable isotope probing. Applied and Environmental Microbiology, 2002, 68(3): 1446-1453.

[34] 曾薇等. 采用 FISH、DGGE和Cloning对短程脱氮系统中硝化菌群的比较分析[J]. 环境科学学报, 2006, 26(5): 734-739.

[35] 邢德峰, 任南琪, 宋业颖等. DG-DGGE分析产氢发酵系统微生物群落动态及种群多样性[J]. 生态学报, 2005, 25(7): 1818- 1823.

[36] W. T. Liu, T. L. Marsh, G. H. Cheng, et al. Characterization of microbial diversity by determining terminal restriction fragment 1ength po1ymorphisms of genes encoding 16S rRNA. App1ied Environmental Microbiology, 1997, 63(11): 4516-4522.

[37] 罗剑飞等. T-RFLP技术及其在硝化细菌群落分析中的应用[J]. 微生物学通报, 2008, 35(3): 456-461.

[38] 余素林, 吴晓磊, 钱易. 环境微生物群落分析的T-RFLP技术及其优化措施[J]. 应用与环境生物学报, 2006, 12(6): 861- 868.

[39] M. Eschenhagena, M. Schupplerb. Molecular characterization of the microbial community structure in two activated sludge systems for the advanced treatment of domestic effluents. Water Research, 2003, 37(13): 3224-3232.

[40] 王晓慧, 文湘华, 丁鵾, 张辉, 周军. T-RFLP方法分析城市污水处理厂中细菌群落的动态变化[J]. 环境科学, 2010, 31(5): 1307-1312.

[41] H. L. Ayala-del-Río, S. J. Callister, C. S. Criddle, et al. Correspondence between community structure and function during suc- cession in phenol and phenol-p1us-trichloroethene-fed sequencing batch reactors. App1ied Environmental Microbiology, 2004, 70(8): 4950-4960.

[42] J. G. Williams, A. R. Kubelik, K. J. Livak, et al. DNA polymorphisms amplified by arbitrary primers are useful as genetic mark- ers. Nucleic Acids Research, 1990, 18(22): 6531-6534.

[43] J. Welsh, M. Mcclelland. Fingerprinting genomes using PCR with arbituary primers. Nucleic Acids Research, 1990, 18(24): 7213- 7218.

[44] 白生文, 范惠玲. RAPD标记技术及其应用进展[J]. 河西学院学报, 2008, 24(2): 52-54.

[45] 刘晓宇. RAPD分子标记技术概述及应用[J]. 科技创新与生产力, 2010, 9: 98-99.

[46] 姜自锋, 林乃铨, 徐梅. RAPD技术及其应用中的一些问题[J]. 福建农林大学学报, 2002, 31(3): 356-360.

[47] 张志永, 张劲松, 巩学千等. 抗SMV 栽培大豆种质资源的SCAR标记指纹图谱分析[J]. 高技术通讯, 1998, 8(10): 49-53.

[48] J. Basam, P. M. Gresshoff. DNA amplification fingerprinting using very short arbitrary oligonucleotide primers. Bio Technology, 1991, 9: 553-557.

[49] S. G. Coply. Efficient detection of DNA poly morphisms by fluorescent RAPD analysis. Biotechniques, 1999, 22(4): 690-692, 694, 696.

[50] J. Ramser, K. Weising, C. Viktor, et al. Increased informativeness of RAPD analysis by detection of microsatellite motifs. Biotechniques, 1997, 23(2): 285-290.

[51] M. Zabeau, P. Vos. European Patent Application 92402629. (Publication number: 0534858 A), 1992.

[52] 李珊, 赵桂仿. AFLP分子标记及其应用[J]. 西北植物学报, 2003, 23(5): 830-836.

[53] 王世伟等. AFLP技术在微生物分类鉴定、基因标定及遗传多样性方面的应用[J]. 生物技术, 2003, 13(5): 42-43.

[54] K. S. Boumedine, A. Rodolakis. AFLP allows the identification of genomic markers of ruminant Chlamydia psittaci strains useful for typing and epidemiological studies. Research in Microbi- ology, 1998, 149(10): 735-744.

[55] A. W. G. Wurff, Y. L. Chan, N. M. Straalen, et al. TE-AFLP: Combining rapidity and robustness in DNA fingerprinting. Nucleic Acids Research, 2000, 28(24): 105.

[56] 万春玲, 谭远德. AFLP的一种改进方法[J]. 南京师大学报, 1999, 22(2): 88-91.

[57] M. T. Cervera, J. C. Cabezas, J. C. Sancha, et al. Application of AFLPs to the characterization of grapevine (Vitis vinifera L.) genetic resources. Theoretic and Applied Genetics, 1998, 97(1-2): 51-59.

[58] 王爱杰, 阚洪晶, 于振国等. SSCP技术分析活性污泥微生物群落结构的条件优化及检验[J]. 微生物学通报, 2008, 35(7): 1164-1169.

分享
Top