电网扰动识别研究现状与展望
Status and Prospect of Power Disturbance Identification Research

作者: 熊小伏 , 郑伟 :重庆大学;

关键词: 扰动识别数字化变电站监控与数据采集广域测量频率监测网络故障录波<br>Disturbance Identification Digital Substation Supervisory Control and Data Acquisition Wide Area Measurement Frequency Monitoring Network Fault Record

摘要: 及时准确地对电网扰动进行识别,在电力系统的安全稳定运行中具有举足轻重的作用。本文综述了电网扰动识别的现状及存在的问题,指出智能电网开展扰动识别的必要性,从扰动特征量确定、扰动特征量提取方法、扰动源识别三个方面对扰动研究进行了分类,提出了系统开展扰动研究需要解决的问题,并展望了在数字化变电站实施扰动识别的优势。

Abstract: Timely and accurate power system disturbance identification plays an essential role in the security and stabil-ity of power system. This paper reviews the status and problems of power disturbance recognition, points out the need to identify disturbance in the smart grid, and divides the disturbance research into three areas which include characteristic quantity determination, extraction method and disturbance source identification. The problems that should be solved in comprehensive disturbance recognition have been raised and the advantages of disturbance identification based on digi-tal substation have been prospected.

文章引用: 熊小伏 , 郑伟 (2012) 电网扰动识别研究现状与展望。 智能电网, 2, 16-29. doi: 10.12677/sg.2012.21004

参考文献

[1] 何飞跃. 电力系统网络化控制中的关键问题[J]. 电网技术, 2009, 33(1): 80-86.

[2] S. Tamronglak, S. H. Horowitz, A. G. Phadke, et al. Anatomy of power systems blackouts preventive relaying strategies. IEEE Trans on Power Delivery, 1996, 11(2): 708-715.

[3] M. M. Eissa, M. E. Masoud and M. M. M. Elanwar. A novel back up wide area protection technique for power transmission grids using phasor measurement unit. IEEE Trans on Power Delivery, 2010, 25(1): 270-278.

[4] 王强, 韩英铎. 电力系统厂站及调度自动化综述[J]. 电力系统自动化, 2000, 24(5): 61-69.

[5] 于尔铿, 刘广一, 周京阳. 能量管理系统(EMS)[M]. 北京: 科学出版社, 1998: 42-45.

[6] 吴海霞, 常勇. 低频振荡广域监控研究现状及新进展[J]. 高电压技术, 2008, 34(8): 1737-1744.

[7] 常乃超, 兰洲, 甘德强等. 广域测量系统在电力系统分析及控制中的应用综述[J]. 电网技术, 2005, 29(10): 46-52.

[8] C. W. Taylor, D. C. Erickson. Recording and analyzing the July 2 cascading outage. IEEE Computer Applications in Power, 1997, 10(1): 26-30.

[9] J. W. Ballance, B. Bhargava and G. D. Rodriguez. Monitoring power system dynamics using phasor measurement tech-nology for power system dynamic security assessment. Proceedings of 2003 IEEE Bologna PowerTech, Bologna, 2003, 3: 683-689.

[10] R. O. Burnett, M. M. Butts, T. W. Cease, et al. Synchronized phasor measurements of a power system event. IEEE Trans on Power Systems, 1994, 9(3): 1643-1650.

[11] J. F. Hauer. Validation of phasor calcula-tions in the Macrodyne PMU for California-Oregon transmission pro-ject tests of March 1993. IEEE Trans on Power Delivery, 1996, 11(3): 1224-1231.

[12] M. Yong. Phasor measurement applications in China. Yokohama: Proceedings of IEEE/PES Transmission and Distribution Conference and Exhibition 2002 Asia Pacific, 2002: 485-489.

[13] H. Saitoh. GPS synchronized measurement applications in Japan. Yoko-hama: Proceedings of IEEE/PES Transmission and Distribution Con-ference and Exhibition 2002 Asia Pacific, 2002: 494- 499.

[14] M. Akke, D. Karlsson. Phasor measurement applications in Scandinavia. Yokohama: Proceedings of IEEE/PES Transmission and Distribution Conference and Exhibition 2002 Asia Pacific, 2002: 480-484.

[15] C. Liu. Phasor measurement application in Taiwan. Yokohama: Proceed-ings of IEEE/PES Transmission and Distribution Conference and Ex-hibition 2002 Asia Pacific, 2002, 1: 490-493.

[16] B. Bhargava. Syn-chronized phasor measurement system project at Southern California Edison Co. Edmonton: Proceedings of IEEE Power Engineering Soci-ety Summer Meeting, 1999: 16- 22.

[17] J. Rasmussen, P. Jorgensen. Synchronized phasor measurements of a power system event in Eastern Denmark. IEEE Trans on Power Delivery, 2006, 21(1): 278-284.

[18] 王兆家, 岑宗浩, 陈汉中. 华东电网多功能功角实时监测系统的开发及应用[J]. 电网技术, 2002, 26(8): 73-77.

[19] 闵勇, 丁仁杰, 韩英铎等. 一次系统事故的同步相量量测结果分析[J]. 电力系统自动化, 1998, 22(7): 10-13.

[20] 宋晓娜, 毕天姝, 吴京涛等. 基于WAMS的电网扰动识别方法[J]. 电力系统自动化, 2006, 30(5): 24-73.

[21] 秦晓辉, 毕天姝, 杨奇逊. 基于广域同步量测的电力系统扰动识别与定位方法[J]. 电网技术, 2009, 33(12): 35-41.

[22] Z. A. Zhong, C. C. Xu, B. J. Billian, et al. Power system frequency moni-toring network (FNET) implementation. IEEE Trans on Power System, 2005, 20(4): 1914-1921.

[23] 陈昊琳, 张国庆, 郭志忠. 故障录波器发展历程及现状分析[J]. 电力系统保护与控制, 2010, 38(5): 148-152.

[24] J. Faiz, S. Lotfi-Fard. A novel wavelet-based algorithm for discrimination of internal faults from magnetizing inrush currents in power transformers. IEEE Trans on Power Delivery, 2006, 21(4): 1989-1996.

[25] N. Zhang, M. Kezunovic. Transmission line bound-ary protection using wavelet transform and neural network. IEEE Trans on Power Delivery, 2007, 22(2): 859-869.

[26] S. M. Brahma. Distance relay with out-of-step blocking function using wavelet transform. IEEE Trans on Power Delivery, 2007, 22(3): 1360-1366.

[27] S. Santoso, E. J. Powers and W. M. Grady. Power quality disturbance identification using wavelet transforms and artificial neural networks. Las Vegas: Proceedings of 7th International Conference on Harmonics and Quality of Power, 1996: 615-618.

[28] D. J. Trudnowski, J. R. Smith, T. A. Short, et al. An application of prony methods in pass design for multi machine systems. IEEE Trans on Power System, 1991, 6(1): 118-126.

[29] 芦晶晶, 郭剑, 田芳等. 基于Prony方法的电力系统振荡模式分析与PSS参数设计[J]. 电网技术, 2004, 28(15): 31-34.

[30] 肖晋宇, 谢小荣, 韩英铎等. 基于在线辨识的电力系统广域阻尼控制[J]. 电力系统自动化, 2004, 28(23): 22-27.

[31] 肖晋宇, 谢小荣, 韩英铎. 利用有限时间扰动后的响应辨识电力系统的主导特征值[J]. 中国电机工程学报, 2005, 25(12): 1-5.

[32] 穆钢, 王宇庭, 安军等. 根据受扰轨迹识别电力系统主要振荡模式的信号能量法[J]. 中国电机工程学报, 2007, 27(19): 7- 11.

[33] 丁蓝, 薛安成, 李津等. 基于窗口滑动改进Prony算法的电力系统低频振荡识别[J]. 电力系统自动化, 2010, 34(22): 24-28.

[34] 占勇, 程浩忠, 丁屹峰等. 基于S变换的电能质量扰动支持向量机分类识别[J]. 中国电机工程学报, 2005, 25(4): 51-56.

[35] 徐永梅, 肖湘宁, 杨以涵等. 基于dq变换和ANN的电能质量扰动辨识[J]. 电力系统自动化, 2001, 25(14): 24-28.

[36] 李天云, 高磊, 赵妍. 基于HHT的电力系统低频振荡分析[J]. 中国电机工程学报, 2006, 26(14): 24-30.

[37] 穆钢, 史坤鹏, 安军等. 结合经验模态分解的信号能量法及其在低频振荡研究中的应用[J]. 中国电机工程学报, 2008, 28(19): 36-41.

[38] 李天云, 陈昌雷, 周博等. 奇异值分解和最小二乘支持向量机在电能质量扰动识别中的应用[J]. 中国电机工程学报, 2008, 28(34): 124-128.

[39] A. A. M. Zin, S. P. A. Karim. The utilization of digital fault recorders in protection system analysis on Tenaga Nasional Berhad transmission system. IEEE Trans on Power Delivery, 2007, 22(4): 2040-2046.

[40] A. A. M. Zin, S. P. A. Karim. The application of fault signature analysis in Tenaga Nasional Berhad Malaysia. IEEE Trans on Power Delivery, 2007, 22(4): 2047-2056.

[41] A. Jamehbo-zorg, S. M. Shahrtash. A decision tree-based method for fault classifi-cation in double-circuit transmission lines. IEEE Trans on Power De-livery, 2010, 25(4): 2184-2189.

[42] A. Jamehbozorg, S. M. Shahrtash. A decision-tree-based method for fault classification in single-circuit transmission lines. IEEE Trans on Power Delivery, 2010, 25(4): 2190-2196.

[43] C. Chen, C. Liu and J. Jiang. A new adaptive PMU based protection scheme for transposed/untransposed parallel trans-mission lines. IEEE Trans on Power Delivery, 2002, 17(2): 395-404.

[44] C. Chen, C. Liu and J. Jiang. Counter-propagation net-work based fault classification for double-circuit lines. Bari: Proceed-ings of 8th Mediterranean Electrotechnical Conference, 1996: 657-660.

[45] R. K. Aggrawal, Q. Y. Xuan, R. W. Dunn, et al. A novel fault classification technique for double-circuit lines based on a com-bined unsupervised/supervised neural network. IEEE Trans on Power Delivery, 1999, 14(4): 1250-1256.

[46] H. Khorashadi-Zadeh. Artificial neural network approach to fault classification for double circuit trans-mission line. Sao Paulo: Proceedings of IEEE/PES Transmission and Distribution Conference and Exposition Latin America, 2004: 859-862.

[47] A. H. Osman, O. P. Malik. Protection of parallel trans-mission lines using wavelet transform. IEEE Trans on Power Delivery, 2004, 19(1): 49-55.

[48] K. M. Silva, B. A. Souza and N. S. D. Brito. Fault detection and classification in transmission lines based on wave-let transform and ANN. IEEE Trans on Power Delivery, 2006, 21(4): 2058- 2063.

[49] B. Das, J. V. Reddy. Fuzzy-logic-based fault classifi-cation scheme for digital distance protection. IEEE Trans on Power Delivery, 2005, 20(2): 609-616.

[50] O. A. S. Youssef. Combined fuzzy-logic wavelet-based fault classification technique for power system relaying. IEEE Trans on Power Delivery, 2004, 19(2): 582-589.

[51] H. Wang, W. W. L. Keerthipala. Fuzzy-neuro approach to fault classification for transmission line protection. IEEE Trans on Power Delivery, 1998, 13(4): 1093-1104.

[52] 高师湃, 李群湛, 贺建闽. 闪变测试系统研究[J]. 电力自动化设备, 2002, 22(5): 22-25.

[53] 赵学东, 孙树勤. 闪变仪中调制波的几种检波方法[J]. 电网技术, 1996, 20(4): 52-54.

[54] 马玉龙, 刘连光, 张建华等. IEC闪变测量原理的数字化实现方法[J]. 中国电机工程学报, 2001, 21(11): 92-95.

[55] 舒泓, 王毅. 基于数学形态滤波和Hilbert变换的电压闪变测量[J]. 中国电机工程学报, 2008, 28(1): 111-114.

[56] 刘阳, 杨洪耕. 盲信号分离在电压闪变分析中的应用[J]. 电工技术学报, 2007, 22(3): 138-142.

[57] 李明, 王晓茹. 采用时频原子方法的电压闪变检测[J]. 电网技术, 2010, 34(7): 94-97.

[58] 张全明, 刘会金. 最小二乘支持向量机在电能质量扰动分类中的应用[J]. 中国电机工程学报, 2008, 28(1): 106-110.

[59] 李庚银, 王洪磊, 周明. 基于改进小波能熵和支持向量机的短时电能质量扰动识别[J]. 电工技术学报, 2009, 24(4): 161- 167.

[60] 王晶, 束洪春, 陈学允. 检测电压瞬时脉冲扰动的小波–神经网络新方法[J]. 电力系统自动化, 2002, 26(6): 50-54.

[61] 李天云, 赵妍, 韩永强等. Hilbert-Huang变换方法在谐波和电压闪变检测中的应用[J]. 电网技术, 2005, 29(2): 73-77.

[62] G. B. Ancell, N. C. Pahalawaththa. Maximum likelihood estimation of fault location on transmission lines using traveling waves. IEEE Trans on Power Delivery, 1994, 9(2): 680-689.

[63] M. S. Choi, S. J. Lee, D. S. Lee, et al. A new fault location algorithm using direct current analysis for distribution system. IEEE Trans on Power Delivery, 2004, 19(1): 35-41.

[64] X. J. Zheng, K. K. Li, Z. Y. Liu, et al. Fault location using traveling wave for power network. Seattle: Proceedings of the IEEE/ IAS 39th Annual Meeting, 3-7 October 2004, 2426-2429.

[65] Z. M. Radojevic, V. V. Terzija and M. B. Djuric. Numerical for overhead lines arcing faults detection and distance and directional. IEEE Trans on Power Delivery, 2000, 15(1): 31-37.

[66] T. Kawady, J. Stenzel. A practical fault location approach for double circuit transmis-sion lines using single end data. IEEE Trans on Power Delivery, 2003, 18(4): 1166-1173.

[67] V. N. Gohokar, V. V. Gohokar. Fault location in automated distribution network. Kobe: Proceedings of IEEE Interna-tional Symposium on Circuits and Systems, 2005: 3898-3901.

[68] H. Hizam, P. A. Crossley. Single ended fault location technique on a radial distribution network using fault generated current signal. Proceeding International Journal Engineering Technology, 2006, 3: 148-158.

[69] M. Gilany, D. K. Ibrahim and E. T. Eldin. Traveling-wave-based fault-location scheme for multiend-aged underground cable system. IEEE Trans on Power Delivery, 2007, 22(1): 82-89.

[70] D. K. Ibra-him, E. S. T. Eldin, E. E.-D. A. El-Zahab, et al. Unsynchronized fault-location scheme for nonlinear HIF in transmission lines. IEEE Trans on Power Delivery, 2010, 25(2): 631- 637.

[71] J. Izykowski, E. Rosolowski, P. Balcerek, et al. Accurate noniterative fault location algorithm utilizing two-end unsynchronized measurements. IEEE Trans on Power Delivery, 2010, 25(1): 72- 80.

[72] C. A. Apostolopoulos, G. N. Korres. A novel algorithm for locating faults on trans-posed/untransposed transmission lines without utilizing line parameters. IEEE Trans on Power Delivery, 2010, 25(4): 2328-2338.

[73] M. A. Mirzai, A. A. Afzalian. A novel fault-locator system algorithm principle and practical implementation. IEEE Trans on Power Delivery, 2010, 25(1): 35-46.

[74] C.-S. Yu. An unsynchronized measurements correction method for two-terminal fault-location problems. IEEE Trans on Power Delivery, 2010, 25(3): 1325-1333.

[75] J. A. Jiang, J. Z. Yang, Y. H. Lin, et al. An adaptive PMU based fault detection/location technique for transmission lines I Theory and algorithms. IEEE Trans on Power Delivery, 2000, 15(2): 486- 493.

[76] C. S. Yu, C. W. Liu, S. L. Yu, et al. A new PMU-based fault location algorithm for series compensated lines. IEEE Trans on Power Delivery, 2002, 17(1): 33-46.

[77] S. M. Brahma. Fault location on a transmission line using synchronized voltage measurements. IEEE Trans on Power Delivery, 2004, 19(4): 2619-1622.

[78] J. Suonan, G. Song, Q. Xu, et al. Time-domain fault location algo- rithm for parallel transmission lines using unsynchro-nized cur- rents. International Journal of Electrical Power & Energy Sys- tems, 2006, 28(4): 253-260.

[79] J. Izykowski, R. Molag, E. Rosolowski, et al. Accurate location of faults on power transmission lines with use of two-end unsyn- chronized measurements. IEEE Trans on Power Delivery, 2006, 21(2): 627-633.

[80] Y. Liao, S. Elangovan. Unsynchronized two-terminal transmission-line fault-location without using line parameters. IEE Proceedings-Generation Transmission and Distribution, 2006, 153(6): 639-643.

[81] E. G. Silveira, C. Pereira. Transmission line fault location using two-terminal data without time synchronization. IEEE Trans on Power Systems, 2007, 22(1): 498-499.

[82] Y. Liao. Unsynchronized fault location based on distributed parameter line model. Electric Power Components and Systems, 2007, 35(9): 1061-1077.

[83] Y. Liao, M. Kezunovic. Optimal estimate of transmission line fault location considering measurement errors. IEEE Trans on Power Delivery, 2007, 22(3): 1335-1341.

[84] M. M. Saha, J. Izykowski, E. Rosolowski, et al. ATP-EMTP investigation of a new algorithm for locating faults on power transmission lines with use of two-end unsynchronized measurements. Lyon: Proceedings of 2007 International Power Systems Transients (IPST 2007) Conference, 2007.

[85] A. L. Dalcastagne, S. N. Filho, H. H. Zurn, et al. An iterative two- terminal fault-location method based on unsynchronized phasors. IEEE Trans on Power Delivery, 2008, 23(4): 2318- 2329.

[86] Y. Liao, N. Kang. Fault-location algorithms without utilizing line parameters based on the distributed parameter line model. IEEE Trans on Power Delivery, 2009, 24(2): 579-584.

[87] Z. M. Radojevic, C. H. Kim, M. Popov, et al. New approach for fault location on transmission lines not requiring line parameters. Kyoto: Proceedings of 2009 International Power Sys-tems Transients (IPST 2009) Conference. 2009.

[88] G. Manassero Jr, E. C. Senger, R. M. Nakagomi, et al. Fault-location system for multiter-minal transmission lines. IEEE Trans on Power Delivery, 2010, 25(3): 1418-1426.

[89] A. Girgis, D. Hart and W. Peterson. A new fault location technique for two and three terminal lines. IEEE Trans on Power Delivery, 1992, 7(1): 98-107.

[90] R. K. Aggarwal, D. V. Coury, A. T. Johns, et al. A practical approach to accurate fault location on extra high voltage teed feeders. IEEE Trans on Power Delivery, 1993, 8(3): 874-883.

[91] L. L. Lai, N. Rajkumar, E. Vaseekar, et al. Wave-let transform and neural networks for fault location of a teed-network. Perth: Proceedings of International Conference Power Systems Tech-nology, 2000: 807-811.

[92] A. D. Tziouvaras, J. B. Roberts and G. Benmouyal. New multi- ended fault location design for two- or three-terminal lines. Amsterdam: Proceedings of 7th IEE Development in Power System Protection International Conference, 2001: 395-398.

[93] C. Yu, C. Liu and Y. Lin. A fault location algorithm for transmission lines with tapped leg-PMU based approach. Vancouver: Pro-ceedings of Power Engineering Society Summer Meeting, 2001: 915-920.

[94] Y. Lin, C. Liu and C. Yu. A new fault locator for three-terminal transmission lines using two-terminal synchronized voltage and current phasors. IEEE Trans on Power Delivery, 2002, 17(2): 452-459.

[95] M. Abe, N. Otsuzuki, T. Emura, et al. Development of a new fault location system for multi-terminal single transmission lines. IEEE Trans on Power Delivery, 1995, 10(1): 159-168.

[96] S. M. Brahma. Fault location scheme for a multi-terminal transmission line using synchronized voltage measurements. IEEE Trans on Power Delivery, 2005, 20(2): 1325-1331.

[97] T. Nagasawa, M. Abe, N. Otsuzuki, et al. Development of a new fault location algorithm for multiterminal two-parallel transmission lines. IEEE Trans on Power Delivery, 1992, 7(3): 1516- 1532.

[98] T. Funabashi, H. Otoguro, Y. Mizuma, et al. Digital fault location for parallel double-circuit multi-terminal trans-mission lines. IEEE Trans on Power Delivery, 2000, 15(2): 531-537.

[99] 邓集祥, 欧小高, 姚天亮. 基于小波能量系数的主导低频振荡模式检测[J]. 电工技术学报, 2009, 24(8): 141-146.

[100] 鞠平, 谢欢, 孟远景等. 基于广域测量信息在线辨识低频振荡[J]. 中国电机工程学报, 2005, 25(22): 56-60.

[101] 韩松, 何利铨, 孙斌等. 基于希尔伯特–黄变换的电力系统低频振荡的非线性非平稳分析及其应用[J]. 电网技术, 2008, 32(4): 56-60.

[102] 汤涌. 电力系统强迫功率振荡分析[J]. 电网技术, 1995, 19(12): 6-10.

[103] 王铁强, 贺仁睦, 王卫国等. 电力系统低频振荡机理的研究[J]. 中国电机工程学报, 2002, 22(2): 21-25.

[104] 汤涌. 电力系统强迫功率振荡的基础理论[J]. 电网技术, 2006, 30(10): 29-33.

[105] 徐衍会, 贺仁睦, 韩志勇. 电力系统共振机理低频振荡扰动源分析[J]. 中国电机工程学报, 2007, 27(17): 83-87.

[106] 韩志勇, 贺仁睦, 马进等. 电力系统强迫功率振荡扰动源的对比分析[J]. 电力系统自动化, 2009, 33(3): 16-19.

[107] 余一平, 闵勇, 陈磊. 多机电力系统强迫功率振荡稳态响应特性分析[J]. 电力系统自动化, 2009, 33(22): 5-9.

[108] 余一平, 闵勇, 陈磊等. 基于能量函数的强迫功率振荡扰动源定位[J]. 电力系统自动化, 2010, 34(5): 1-6.

[109] 高翔. 数字化变电站应用技术[M]. 北京: 中国电力出版社, 2008: 14-24.

[110] 高翔. 数字化变电站若干关键技术研究[D]. 浙江大学, 2008.

[111] 高翔, 张沛超. 数字化变电站的主要特征和关键技术[J]. 电网技术, 2006, 30(23): 67-87.

分享
Top