一类高阶周期微分方程的解和小函数的关系
The Relation between Solutions of a Class of High-er-Order Periodic Differential Equations with Functions of Small Growth

作者: 娄 伟 * , 陈宗煊 :华南师范大学数学科学学院;

关键词: 高阶微分方程收敛指数整函数不动点超级Higher-Order Differential Equations Fixed Point Convergence Exponent Entire Function Hyperorder

摘要: 在本文中研究了一类高阶周期微分方程的解和它们的一阶,二阶导数与小函数之间的关系,进而探讨这类解的不动点及超级的问题,得到它们的不动点性质,由于受到周期微分方程的制约,与一般整函数的不动点性质相比有所不同。

Abstract: In this paper we research the relation between solution of a class of higher-order periodic differential equations with their first derivative, second derivative and functions of small growth. And then discuss fixed points and hyperorder of the class of solutions to get the character of their fixed points. Under the condition of the higher-order periodic differential equations, the character of their fixed points is different from other general entire functions’.

文章引用: 娄 伟 , 陈宗煊 (2012) 一类高阶周期微分方程的解和小函数的关系。 理论数学, 2, 177-184. doi: 10.12677/PM.2012.24028

参考文献

[1] W. Hayman. Meromorphic function. Oxford: Clarendon Press, 1964.

[2] I. Laine. Nevanlinna theory and complex differential equations. Berlin: W.de Gruyter, 1993.

[3] 杨乐. 值分布论及其新研究[M]. 北京: 科学出版社, 1982.

[4] Z. X. Chen. The growth of solutions of differential equation Science in China, Series, 2001, 31(9): 775-784.

[5] Z. X. Chen. The relation between solution of a class of second order differential equation with functions of small growth. Chinese Annals of Mathematics, 2006, A27: 431-442.

[6] 徐俊峰. 微分方程的解和小函数的关系[J]. 数学学报, 2010, 53(2): 291-296.

[7] 庄圻泰, 杨重骏. 亚纯函数的不动点与分解论[M]. 北京: 北京大学出版社, 1988.

[8] 陈宗煊. 二阶复域微分方程解的不动点和超级[J]. 数学物理学报, 2000, 20(3): 425-432.

[9] 仪洪勋, 杨重骏. 亚纯函数唯一性定理[M]. 北京: 科学出版社, 1988.

[10] Z.-X. Chen, K. H. Shon. Research article on subnormal solutions of periodic differential equations. Hindawi Publishing Corporation Abstract and Applied Analysis, 2010, Article ID: 170762.

[11] 涂金, 陈宗煊, 曹廷彬. 某类高阶微分方程解的复振荡[J]. 江西师范大学报, 2005, 29(1): 8-11.

[12] 何育赞, 肖修治. 代数体函数与常微分方程[M]. 北京: 科学出版社, 1988.

[13] Z.-X. Chen. Zeros of meromorphic solutions of higher order linear differential equations. Analysis, 1994, 14(4): 425-438.

分享
Top