钒掺杂的可充镁电池正极材料Mg1.03Mn0.97SiO4
Vanadium Doped Mg1.03Mn0.97SiO4 Cathode Materials for Rechargeable Magnesium Batteries

作者: 伊丽奴尔•吐胡达洪 * , 努丽燕娜 * , 陈 强 , 杨 军 * , 王久林 :上海交通大学化学化工学院;

关键词: 可充镁电池正极材料电化学性能金属离子掺杂Rechargeable Magnesium Batteries Cathode Materials Electrochemical Performance Metal Ion Doping

摘要: 采用高温固相方法制备了钒掺杂的可充镁电池正极材料Mg1.030.5xMn0.97xVxSiO4(x = 00.0340.0690.134)X射线衍射(XRD)表明掺杂VMg1.03Mn0.97SiO4的晶体结构未发生变化。扫描电镜(SEM)显示材料颗粒粒径随V掺杂量的增加而逐渐减小。通过循环伏安、交流阻抗、恒电流充放电测试比较了掺杂前后四种材料的电化学性能。电化学结果表明,掺杂V改善了Mg1.03Mn0.97SiO4脱嵌镁的可逆性、提高了其放电容量和放电电压平台。在0.01 C倍率下,x = 0.069Mg1.030.5xMn0.97xVxSiO4放电容量可达140 mAh/g远大于未掺杂的Mg1.03Mn0.97SiO4 (40 mAh/g),并且1.62 V(vs. Mg)的放电平台可提高到1.65 V

Abstract: Vanadium doped Mg1.03–0.5xMn0.97–xVxSiO4 (x = 0, 0.034, 0.069 and 0.134) materials were synthesized by a high temperature solid-state method. The crystal structure and morphology were characterized by XRD and SEM measurements and the results demonstrated that V3+ ion dopant does not affect the structure of Mg1.03Mn0.97SiO4 and particle size decreases with increasing vanadium amount. Furthermore, the electrochemical performance of Mg1.03–0.5xMn0.97–xVxSiO4 materials as rechargeable magnesium battery cathodes was compared by cyclic voltammetry, AC impedance and direct current charge-discharge techniques. The vanadium doped materials exhibit improved electrochemical performance with lower polarization for magnesium de-intercalation and intercalation, larger discharge capacity and higher discharge flat plateau compared with that of pure Mg1.03Mn0.97SiO4. At a rate of 0.01 C(3.14 mA/g), 140 mAh/g discharge capacity and 1.65 V (vs. Mg) discharge voltage plateau can be reached for Mg1.03–0.5xMn0.97–xVxSiO4 with x = 0.069, compared with 40 mAh/g discharge capacity and 1.62 V (vs. Mg) discharge voltage plateau for pure Mg1.03Mn0.97SiO4.

文章引用: 伊丽奴尔•吐胡达洪 , 努丽燕娜 , 陈 强 , 杨 军 , 王久林 (2012) 钒掺杂的可充镁电池正极材料Mg1.03Mn0.97SiO4。 材料科学, 2, 139-144. doi: 10.12677/MS.2012.24025

参考文献

[1] D. Aurbach, Z. Lu, A. Schechter, Y. Gofer, H. Gizbar, R. Turge- man, Y. Cohen, M. Moshkovich and E. Levi. Prototype systems for rechargeable magnesium batteries. Nature, 2000, 407: 724-727.

[2] 袁华堂, 吴峰, 武绪丽, 李强. 可充镁电池的研究和发展趋势[J]. 电池, 2002, 32(S1): 14-17.

[3] 冯真真, 努丽燕娜, 王久林, 杨军. 镁二次电池研究进展[J]. 化学与物理电源系统, 2007, 1: 73.

[4] P. Novák, R. Imhof and O. Haas. Magnesium insertion elec- trodes for rechargeable nonaqueous batteries: A competitive alter- native to lithium. Electrochimica Acta, 1999, 45: 351-367.

[5] 郑育培, 努丽燕娜, 杨军, 陈强, 王久林. 可充镁电池正极材料研究进展[J]. 化工进展, 2011, 30(5): 1024-1032.

[6] M. D. Levi, E. Lancry, H. Gizbar, Z. Lu, E. Levi, Y. Gofer and D. Aurbach. Kinetic and thermodynamic studies of Mg2+ and Li+ ion insertion into the Mo6S8 Chevrel Phase. Journal of the Elec- trochemical Society, 2004, 151: A1044-A1051.

[7] M. D. Levi, E. Lancri, E. Levi, H. Gizbar, Y. Gofer and D. Aurbach. The effect of the anionic framework of Mo6X8 Chevrel phase (X = S, Se) on the thermodynamics and the kinetics of the electrochemical insertion of Mg2+ ions. Solid State Ionics, 2005, 176: 1695-1699.

[8] D. Aurbach, G. S. Suresh, E. Levi, A. Mitelman, O. Mizrahi, O. Chusid and M. Brunelli. Progress in rechargeable magnesium battery technology. Advanced Materials, 2007, 19: 4260-4267.

[9] G. Suresh, M. Levi and D. Aurbach. Effect of chalcogen substi- tution in mixed Mo6S8–nSen (n = 0, 1, 2) Chevrel phases on the thermodynamics and kinetics of reversible Mg ions insertion. Electrochimica Acta, 2008, 53: 3889-3896.

[10] N. Amir, Y. Vestfrid, O. Chusid, Y. Gofer and D. Aurbach. Pro- gress in nonaqueous magnesium electrochemistry. Journal of Pow- er Sources, 2007, 174: 1234-1240.

[11] A. Mitelman, M. D. Levi, E. Lancry, E. Levi and D. Aurbach. New cathode materials for rechargeable Mg batteries: Fast Mg ion transport and reversible copper extrusion in CuyMo6S8 com- pounds. Chemical Communications, 2007: 4212-4214.

[12] E. Levi, A. Mitelman, D. Aurbach and M. Brunelli. Structural mechanism of the phase transitions in the Mg-Cu-Mo6S8 system probed by ex situ synchrotron X-ray diffraction. Chemistry of Materials, 2007, 19: 5131-1542.

[13] Z. L. Tao, L. N. Xu, X. L. Gou, J. Chen and H. T. Yuan. TiS2 nanotubes as the cathode materials of Mg-ion batteries. Chemi- cal Communications, 2004, 18: 2080-2081.

[14] Y. L. Liang, R. J. Feng, S. Q. Yang, H. Ma, J. Liang and J. Chen. Rechargeable Mg batteries with Graphene-like MoS2 cathode and ultrasmall Mg nanoparticle anode. Advanced Materials, 2011, 23: 640-643.

[15] L. F. Jiao, H. T. Yuan, Y. J. Wang, J. S. Cao and Y. M. Wang. Mg intercalation properties into open-ended vanadium oxide nano- tubes. Electrochemistry Communications, 2005, 7: 431-436.

[16] L. F. Jiao, H. T. Yuan, Y. C. Si, Y. J. Wang and Y. M. Wang. Syn- thesis of Cu0.1-doped vanadium oxide nanotubes and their appli- cation as cathode materials for rechargeable magnesium bat- teries. Electrochemistry Communications, 2006, 8: 1041-1044.

[17] Z. Z. Feng, J. Yang, Y. N. Nuli and J. L. Wang. Sol-gel synthesis of Mg1.03Mn0.97SiO4 and its electrochemical intercalation beha- vior. Journal of Power Sources, 2008, 184: 604-609.

[18] Z. Z. Feng, J. Yang, Y. N. Nuli, J. L. Wang and X. J. Wang. Pre- paration and electrochemical study of a new magnesium inter- calation material Mg1.03Mn0.97SiO4. Electrochemistry Communi- cations, 2008, 10: 1291-1294.

[19] Y. N. Nuli, J. Yang, J. L. Wang and Y. L. Li. Electrochemical intercalation of Mg2+ in magnesium manganese silicate and its application as high-energy rechargeable magnesium battery ca- thode. Physical Chemistry C, 2009, 113: 12594-12597.

[20] Y. N. Nuli, J. Yang, Y. S. Li and J. L. Wang. Mesoporous magne- sium manganese silicate as cathode materials for rechargeable mag- nesium batteries. Chemical Communications, 2010, 46: 3794-3796.

[21] Y. N. Nuli, Y. P. Zheng, F. Wang, J. Yang, A. I. Minett, J. L. Wang and J. Chen. MWNT/C/Mg1.03Mn0.97SiO4 hierarchical nano- structure for superior reversible magnesium ion storage. Elec- trochemistry Communications, 2011, 13: 1143-1146.

[22] S. Y. Chuang, Y. M. Chiang. Electronically conductive phospho- olivines as lithium storage electrodes. Nature Materials, 2002, 2: 123-128.

[23] C. S. Sun, Z. Zhou, Z. G. Xu, D. G. Wang, J. P. Wei, X. K. Bian and J. Yan. Improved high-rate charge/discharge performances of LiFePO4/C via V-doping. Journal of Power Sources, 2009, 193: 841-845.

[24] J. Hong, C. S. Wang, X. Chen, S. Upreti and M. S. Whittingham. Vanadium modified LiFePO4 cathode for Li-ion batteries. Elec- trochemical and Solid-State Letters, 2009, 12: A33-A38.

[25] J. Kim, Y. U. Park, D. H. Seo, J. Kim, S. W. Kim and K. Kang. Mg and Fe Co-doped Mn based olivine cathode material for high power capability. Journal of the Electrochemical Society, 2011, 158: A250-A254.

[26] F. Wang, J. Yang, Y. N. Nuli and J. L. Wang. Highly promoted elec- trochemical performance of 5V LiCoPO4 cathode material by addi- tion of vanadium. Journal of Power Sources, 2010, 195: 6884-6887.

[27] D. Aurbach, A. Schechter, M. Moshkovich and Y. Cohen. On the mechanisms of reversible magnesium deposition processes. Jour- nal of the Electrochemical Society, 2001, 148: A1004-A1014.

[28] C. A. Francis, P. H. Ribbe. The forsterite-tephroite series: I. Crystal structure refinements. American Mineralogist, 1980, 65, 1263-1269.

[29] A. M. Pires, M. R. Davolos. Luminescence of europium(III) and manganese(II) in barium and zinc orthosilicate. Chemistry of Materials, 2001, 13: 21-27.

[30] 刘芳凌, 韩绍昌, 陈晗, 于文志, 白咏梅. 掺杂离子价态对LiFePO4电化学性能的影响[J]. 电源技术, 2009, 33(5): 399-405.

分享
Top